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Part A

Answer any five questions.

Each question has weight 1.

1. Prove that each function µk is multiplicative.

2. Prove [x + n] = [x] + n.

3. Determine all positive integers n such that [ ]n  divides n.

4. Prove that there do not exist polynomials P and Q such that
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 as x  → ∞.

6. Prove the converse of Wilson’s theorem.

7. Prove that no prime p ≡ 3 mod 4 is the sum of two squares.

8. Prove that m is prime if and only if expm (a) = m – 1 for some a.

(5 × 1 = 5)

Part B

Answer any five questions.

Each question has weight 2.

9. Prove that ϕ (n) > 
6

n
 for all n with atmost 8 distinct prime factors.
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10. For p prime, show that µ (p, ·) is multiplicative.

11. Prove ∑∑
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12. Show that Selberg’s formula implies r + δ = 2.

13. Find all positive integers n for which n17 ≡ n mod 408°.

14. Let S be a set of n integers not necessarily distinct. Prove that some non-empty subject of S has a

sum which is divisible by 7.

15. State and prove Lagrange’s theorem.

16. If | x | < 1 prove that ∫∫
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(5 × 2 = 10)

Part C

Answer any three questions.

Each question has weight 5.

17. Explain :

(i) Dirichlet inverse. (ii) Dirichlet product of arithmetic function.

(iii) Asymptotic equality of function. (iv) Average order of the divisor function.

(v) Generalised convolutions.

18. Define a completely multiplicative function and characterise it.

19. State and prove Shapiros Tauberian theorem.

20. State Chinese remainder theorem. Use it to state and prove the theorem concerning the set of

lattice points visible from the origin.

21. (a) If a prime p does not divide a prove aP – 1 ≡ 1 (mod p).

(b) For any prime p, prove that all the coefficients of the polynomial

f (x) = (x – 1) (x – 2) ..... (x – p + 1) – xP – 1 + 1

are divisible by p.

22. (a) Explain the geometric representation of partitions.

(b) Establish the existence of primitive roots mod pα.

(3 × 5 = 15)
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