

19001141

Reg. No
Name

M.Sc. DEGREE (C.S.S.) EXAMINATION, APRIL 2019

Fourth Semester

Faculty of Science

Branch I (A)—Mathematics

MT 04 E01—ANALYTIC NUMBER THEORY

(2012 Admission onwards)

Time: Three Hours

Maximum Weight: 30

Part A

Answer any **five** questions. Each question has weight 1.

- 1. Show that Dirichlet multiplication is commutative.
- 2. Show that Euler totient $\phi(u)$ is multiplicative. Is $\phi(u)$ completely multiplicative. Justify.
- 3. Show that for $x \ge 1$, $\sum_{n \le x} \mu(n) \left[\frac{x}{n} \right] = 1$.
- 4. Define Chebyshev's ψ functions, show that $\psi(x) = \sum_{m \le \log_9 x} \sum_{P \le x^{1/m}} \log P$.
- 5. Show that for $x \ge 2$ $\vartheta(x) = \pi(x) \log x \int_{2}^{x} \frac{\pi(t)}{t} dt$.
- 6. Show that if $a \equiv b \pmod{a}$ and d/a and d/m, then d/b.
- 7. Solve the congruence $5x = 3 \pmod{24}$.
- 8. If g is a primitive root mod P, where p is an odd prime. Show that $g^2, g^4, \ldots, g^{p-1}$ are quadratic residues mod P.

 $(5 \times 1 = 5)$

19001141

Part B

Answer any **five** questions. Each question has weight 2.

- 9. If $n \le 1$ show that $\sum_{d \in \mathcal{D}} \phi(d) = n$.
- 10. If f and g are multiplicative functions prove that their Dirichlet product f * g is multiplicative.
- State and prove Euler's summation formula.
- 12. For any arithmetical function ∞ (n) Let A (x) = $\sum_{n \le x} \alpha(n)$, where A (x) = 0 if x < 1. Assume f has a continuous derivative on the interval [y, x], where 0 < y < x. Prove that $\sum_{y < n \le x} \alpha(n) f(n) = A(x) f(x) - A(y) f(y) - \int_{x}^{x} A(t) f^{1}(t) dt.$
- 13. Prove that if (a, m) = 1, the linear congruence $a x \equiv b \pmod{3}$ has exactly one solution.
- State and prove Euler-Fermat theorem.
- State and prove Wilson's theorem.
- 16. Let *x* be an odd integer and $\alpha \ge 3$. Show that $x^{\phi(2^{\alpha})/2} \equiv 1 \pmod{2^{\alpha}}$.

 $(5 \times 2 = 10)$

Part C

Answer any **three** questions. Each question has weight 5.

17. If $x \ge 1$, prove the following:

(a)
$$\sum_{n \le x} \frac{1}{n} = \log x + C + O\left(\frac{1}{x}\right).$$

(b)
$$\sum_{n \le x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + \int (s) + O(x^{-s}) \text{ if } s > 0, s \neq 1.$$

(c)
$$\sum_{n>x} \frac{1}{n^s} = O(x^{1-s}) \text{ if } s > 1.$$

(d)
$$\sum_{n < x} n^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1} + \mathcal{O}\left(x^{\alpha}\right) \text{ if } \alpha \geq 0.$$

19001141

18. For all
$$x \ge 1$$
, show that $\sum_{n \le x} d(n) = x \log x + (2C - 1) x + O(\sqrt{x})$, where C is Euler's constant.

19. Let P_n denote the n^{th} prime. Show that the following asymptotic relations are logically equivalent:

(i)
$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1.$$

(ii)
$$\lim_{x \to \infty} \frac{\pi(x) \log \pi(x)}{x} = 1.$$

(iii)
$$\lim_{n \to \infty} \frac{P_n}{n \log n} = 1.$$

- 20. (a) State and prove Chinese remainder theorem.
 - (b) Prove that the set of lattice points in the plane visible from the origin contains arbitrary large square gaps.
- 21. (a) Assume (a, m) = d and suppose d/b. Prove that the linear congruence $ax \equiv b \pmod{m}$ has exactly d solutions. Also obtain these solutions.
 - (b) State and prove Lagrange's theorem for polynomial Congruence.
- 22. Let P be an odd prime and let d be any positive divisor of P-1. Prove that in every reduced residue system and P there are exactly $\phi(d)$ numbers a such that $\exp_p(a) = d$.

 $(3 \times 5 = 15)$

