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Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.
 

1.  Prove that the set of all algebraic numbers form a field.

2.  Prove that a finite extension E of a finite field F is a simple extension of F.

3.  Express  as a product of its content with a primitive polynomial in 

4.  Check whether the function  for the integral domain  given by  for nonzero  is a
Euclidean norm.

5.  Define Gaussian integers and a norm for it.

6.  Prove that for    with , the conjugate complex numbers  and  are conjugate over .

7.  What is the order of ?

8.  Prove that the spli�ng field over  of   is of degree   over .

9.  Let  be a polynomial in  where  is a field. Define the group of  over .

10.  Show that  is irreducible in .                                    

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.
 

11.  Find the degree and a basis for  over 

12.  If α and β  are construc�ble real numbers, then prove that   when β≠0  are construc�ble.

13.  Define an irreducible element in a PID. Prove that an ideal (p) in a PID is maximal if and only if p is an
irreducible.
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14.  Define(i) UFD, (ii) PID, (iii) Euclidean domain

15.  Let   and . Let   ,   and  .  Find the fixed fields  ,  

and .  

16.  Let  be a finite extension of a field . Let  be an isomorphism of  onto a field  and let  be an algebraic closure of 

. Prove that the number of extensions of   to an isomorphism  of  onto a subfield of  is finite and independent of ,

and .

17.  Let  be an algebraic closure of a field  and let  be a monic polynomial in 

. If  and   in , prove that , that is, all .

18.  State and prove Primi�ve element theorem.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.
 

19.  a) Let F be a field and let f(x) be a nonconstant polynomial in F[x]. Then prove that there exists an extension field E of F and an

α ϵ E such that f(α)=0 
b) Construct a finite field of 4 elements

20.  a) If D is a UFD, then prove that a product of two primitive polynomials in D[x] is again primitive. 
b) Let D be a UFD and let F be a field of quotients of D. Let f(x) in D[x] has degree greater than 0. If f(x) is
irreducible in D[x], then prove that f(x) is also irreducible in F[x]. Also if f(x) is primitive in D[x] and
irreducible in F[x], then prove that f(x) is irreducible in D[x].

21.  a) State and prove the isomorphism extension theorem. 
b) Prove that any two algebraic closures of a field  are isomorphic under an isomorphism leaving each element of  fixed.

22.  a) Let  be a field and  be an irreducible polynomial in . Prove that all zeros of  in   have
the same multiplicity. 
b) Let  be a field and  be an irreducible polynomial in . Prove that  has a factorization in 

  of the form   where   are the distinct zeros of  in   and . 
c) If  is a finite extension of a field , then prove that  divides .

(2×5=10 weightage)
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