

**Reg No** 5 ..... Name 2 .....

## **MSc DEGREE (CSS) EXAMINATION, JANUARY 2022**

## Second Semester

# CORE - ME010201 - ADVANCED ABSTRACT ALGEBRA

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)

2019 Admission Onwards

44499036

Time: 3 Hours

Part A (Short Answer Questions) Answer any eight questions.

Weight 1 each.

- 1. Prove that the set of all algebraic numbers form a field.
- 2. Prove that a finite extension E of a finite field F is a simple extension of F.
- 3. Express  $18x^2 12x + 48$  as a product of its content with a primitive polynomial in  $\mathbb{Z}[x]$
- 4. Check whether the function  $\nu$  for the integral domain  $\mathbb Z$  given by  $\nu(n) = n^2$  for nonzero  $n \in \mathbb Z$  is a Euclidean norm.
- 5. Define Gaussian integers and a norm for it.
- **6**. Prove that for  $a, b \in \mathbb{R}$  with  $b \neq 0$ , the conjugate complex numbers a + bi and a bi are conjugate over  $\mathbb{R}$ .
- 7. What is the order of  $G(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$ ?
- 8. Prove that the splitting field over  $\mathbb{Q}$  of  $x^3 2$  is of degree 6 over  $\mathbb{Q}$ .
- 9. Let f(x) be a polynomial in F[x] where F is a field. Define the group of f(x) over F.
- 10. Show that  $x^4 + 1$  is irreducible in  $\mathbb{Q}[x]$ .

(8×1=8 weightage)

### Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Find the degree and a basis for  $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{18})$  over  $\mathbb{Q}$
- **12.** If  $\alpha$  and  $\beta$  are constructible real numbers, then prove that  $\alpha + \beta, \alpha \beta, \alpha\beta, \alpha/\beta$  when  $\beta \neq 0$  are constructible.
- 13. Define an irreducible element in a PID. Prove that an ideal (p) in a PID is maximal if and only if p is an irreducible.

Page 1/2

Weightage: 30





- 14. Define(i) UFD, (ii) PID, (iii) Euclidean domain
- 15. Let  $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$  and  $F = \mathbb{Q}$ . Let  $\sigma_1 = \psi_{\sqrt{2}, -\sqrt{2}}$ ,  $\sigma_2 = \psi_{\sqrt{3}, -\sqrt{3}}$  and  $\sigma_3 = \sigma_1 \sigma_2$ . Find the fixed fields  $E_{\{\sigma_1, \sigma_3\}}$ ,  $E_{\{\sigma_3\}}$  and  $E_{\{\sigma_2, \sigma_3\}}$ .
- 16. Let E be a finite extension of a field F. Let  $\sigma$  be an isomorphism of F onto a field F' and let  $\overline{F'}$  be an algebraic closure of F'. Prove that the number of extensions of  $\sigma$  to an isomorphism  $\tau$  of E onto a subfield of  $\overline{F'}$  is finite and independent of F',  $\overline{F'}$  and  $\sigma$ .
- 17. Let  $\overline{F}$  be an algebraic closure of a field F and let  $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$  be a monic polynomial in  $\overline{F}[x]$ . If  $(f(x))^m \in F[x]$  and  $m \cdot 1 \neq 0$  in F, prove that  $f(x) \in F[x]$ , that is, all  $a_i \in F$ .
- 18. State and prove Primitive element theorem.

(6×2=12 weightage)

#### Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

19. a) Let F be a field and let f(x) be a nonconstant polynomial in F[x]. Then prove that there exists an extension field E of F and an  $\alpha \in E$  such that  $f(\alpha)=0$ 

b) Construct a finite field of 4 elements

- a) If D is a UFD, then prove that a product of two primitive polynomials in D[x] is again primitive.
  b) Let D be a UFD and let F be a field of quotients of D. Let f(x) in D[x] has degree greater than 0. If f(x) is irreducible in D[x], then prove that f(x) is also irreducible in F[x]. Also if f(x) is primitive in D[x] and irreducible in F[x], then prove that f(x) is irreducible in D[x].
- 21. a) State and prove the isomorphism extension theorem.b) Prove that any two algebraic closures of a field F are isomorphic under an isomorphism leaving each element of F fixed.
- 22. a) Let F be a field and f(x) be an irreducible polynomial in F[x]. Prove that all zeros of f(x) in  $\overline{F}$  have the same multiplicity.

b) Let F be a field and f(x) be an irreducible polynomial in F[x]. Prove that f(x) has a factorization in

 $\overline{F}[x]$  of the form  $a \prod_i (x - \alpha_i)^{
u}$  where  $\alpha_i$  are the distinct zeros of f(x) in  $\overline{F}$  and  $a \in F$ .

c) If *E* is a finite extension of a field *F*, then prove that  $\{E : F\}$  divides [E : F].

(2×5=10 weightage)