MSc DEGREE (CSS) EXAMINATION , JANUARY 2022

 Second Semester

 Second Semester
 CORE - ME010201 - ADVANCED ABSTRACT ALGEBRA
 M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
 2019 Admission Onwards
 44499036

Time: 3 Hours
Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.
Weight 1 each.

1. Prove that the set of all algebraic numbers form a field.
2. Prove that a finite extension E of a finite field F is a simple extension of F.
3. Express $18 x^{2}-12 x+48$ as a product of its content with a primitive polynomial in $\mathbb{Z}[x]$
4. Check whether the function ν for the integral domain \mathbb{Z} given by $\nu(n)=n^{2}$ for nonzero $n \in \mathbb{Z}$ is a Euclidean norm.
5. Define Gaussian integers and a norm for it.
6. Prove that for $a, b \in \mathbb{R}$ with $b \neq 0$, the conjugate complex numbers $a+b i$ and $a-b i$ are conjugate over \mathbb{R}.
7. What is the order of $G(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})$?
8. Prove that the splitting field over \mathbb{Q} of $x^{3}-2$ is of degree 6 over \mathbb{Q}.
9. Let $f(x)$ be a polynomial in $F[x]$ where F is a field. Define the group of $f(x)$ over F.
10. Show that $x^{4}+1$ is irreducible in $\mathbb{Q}[x]$.
($8 \times 1=8$ weightage)

Part B (Short Essay/Problems)

Answer any six questions.
Weight 2 each.
11. Find the degree and a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{1} 8)$ over \mathbb{Q}
12. If α and β are constructible real numbers, then prove that $\alpha+\beta, \alpha-\beta, \alpha \beta, \alpha / \beta$ when $\beta \neq 0$ are constructible.
13. Define an irreducible element in a PID. Prove that an ideal (p) in a PID is maximal if and only if p is an irreducible.
14. Define(i) UFD, (ii) PID, (iii) Euclidean domain
15. Let $E=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and $F=\mathbb{Q}$. Let $\sigma_{1}=\psi_{\sqrt{2},-\sqrt{2}}, \sigma_{2}=\psi_{\sqrt{3},-\sqrt{3}}$ and $\sigma_{3}=\sigma_{1} \sigma_{2}$. Find the fixed fields $E_{\left\{\sigma_{1}, \sigma_{3}\right\}}$, $E_{\left\{\sigma_{3}\right\}}$ and $E_{\left\{\sigma_{2}, \sigma_{3}\right\}}$.
16. Let E be a finite extension of a field F. Let σ be an isomorphism of F onto a field F^{\prime} and let $\overline{F^{\prime}}$ be an algebraic closure of F^{\prime}. Prove that the number of extensions of σ to an isomorphism τ of E onto a subfield of $\overline{F^{\prime}}$ is finite and independent of F^{\prime}, $\overline{F^{\prime}}$ and σ.
17. Let \bar{F} be an algebraic closure of a field F and let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a monic polynomial in $\bar{F}[x]$. If $(f(x))^{m} \in F[x]$ and $m \cdot 1 \neq 0$ in F, prove that $f(x) \in F[x]$, that is, all $a_{i} \in F$.
18. State and prove Primitive element theorem.
($6 \times 2=12$ weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

19. a) Let F be a field and let $f(x)$ be a nonconstant polynomial in $F[x]$. Then prove that there exists an extension field E of F and an $\alpha \in E$ such that $f(\alpha)=0$
b) Construct a finite field of 4 elements
20. a) If D is a UFD, then prove that a product of two primitive polynomials in $D[x]$ is again primitive.
b) Let D be a UFD and let F be a field of quotients of D. Let $f(x)$ in $D[x]$ has degree greater than 0 . If $f(x)$ is irreducible in $D[x]$, then prove that $f(x)$ is also irreducible in $F[x]$. Also if $f(x)$ is primitive in $D[x]$ and irreducible in $F[x]$, then prove that $f(x)$ is irreducible in $D[x]$.
21. a) State and prove the isomorphism extension theorem.
b) Prove that any two algebraic closures of a field F are isomorphic under an isomorphism leaving each element of F fixed.
22. a) Let F be a field and $f(x)$ be an irreducible polynomial in $F[x]$. Prove that all zeros of $f(x)$ in \bar{F} have the same multiplicity.
b) Let F be a field and $f(x)$ be an irreducible polynomial in $F[x]$. Prove that $f(x)$ has a factorization in $\bar{F}[x]$ of the form $a \prod_{i}\left(x-\alpha_{i}\right)^{\nu}$ where α_{i} are the distinct zeros of $f(x)$ in \bar{F} and $a \in F$.
c) If E is a finite extension of a field F, then prove that $\{E: F\}$ divides $[E: F]$.
