BSc DEGREE (CBCS) EXAMINATION, FEBRUARY 2020

 Fifth Semester

 Fifth Semester
 Core Course - MM5CRT03 - ABSTRACT ALGEBRA
 B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science
 2017 Admission Onwards
 8D08D53F

Time: 3 Hours
Maximum Marks :80

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Check whether usual multiplication is a binary operation on the set \mathbb{C}.
2. State whether the set \mathbb{Z}^{+}under multiplication is a group. Justify.
3. Define order of an element in a group.
4. Show that the permutation multiplication is a binary operation on the collection of all permutations of a set A.
5. Define the right regular representation of a group G.
6. Find all orbits of the permutation $\sigma: \mathbb{Z} \rightarrow \mathbb{Z}$ where $\sigma(n)=n+2$.
7. Show that every coset (left or right) of a subgroup H of a group G has the same number of elements as H.
8. Check whether $f:(\mathbb{R},+) \rightarrow(\mathbb{Z},+)$ defined by $f(x)=\lfloor x\rfloor$, the greatest integer $\leq x$ is a group homomorphism or not.
9. Show that S_{n} is not a simple group when $\mathrm{n} \geq 3$.
10. Show that the matrix $\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$ is a divisor of zero in $M_{2}(Z)$
11. Prove that Z_{p} is a field if p is a prime
12. Give an example to show that a factor ring of an integral domain may have divisors of 0

Part B

Answer any six questions.
Each question carries 5 marks.
13. Prove that if $\phi: S \rightarrow S^{\prime}$ is an isomorphism of $\langle S, *\rangle$ with $\left\langle S^{\prime}, *^{\prime}\right\rangle$, and e is the identity element for $*$ on S, then $\phi(e)$ is an identity element for $*^{\prime}$ on S^{\prime}.
14. Prove that a subset H of a group G is a subgroup of G if and only if
a) H is closed under the binary operation of G,
b) the identity element e of G is in H,
c) for all $a \in H$ it is true that $a^{-1} \in H$ also.
15. Let G be a group and let $a \in G$. Then prove that $H=\left\{a^{n} / n \in \mathbb{Z}\right\}$ is a subgroup of G and is the smallest subgroup of G that contains a.
16. Prove from linear algebra that no permutation in S_{n} can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
17. If $n \geq 2$, then prove that the collection of all even permutations of $\{1,2,3, \cdots, n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_{n}.
18. Upto isomorphism find S_{n} / A_{n}
19. Show that A_{n} is a normal subgroup of S_{n}
20. Check whether Z^{+}wth the usual addition and multiplication is a ring
21. Show that $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$ for all a and b in a Ring R If and only if R is commutative.

Part C

Answer any two questions.
Each question carries 15 marks.
22. Find all subgroups of \mathbb{Z}_{36} and draw the subgroup diagram.
23.

1. Let H be a subgroup of a group G. Let the relation \sim_{L} be defined on G by $a \sim_{L} b$ if and only if $a^{-1} b \in H$. Then show that \sim_{L} is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a \in G$?
2. Let H be the subgroup $<\mu_{1}>=\left\{\rho_{0}, \mu_{1}\right\}$ of S_{3}. Find the partitions of S_{3} into left cosets of H, and the partition into right cosets of H.
3. Let H be a subgroup of a group G . prove that $a H b H=a b H$ defines a binary operation on G / H if and only if H is a normal subgroup of G . Then furthere show that if H is a normal subgroup of a group G then G / H is a group. under the binary operation $a H b H=a b H$.
4. a) Show that $\mathrm{I}_{\mathrm{a}}=\{x \in R / a x=0\}$ is an ideal of R, R is a commutative ring and $a \in R$
b) Show that an intersection of ideals of a ring R is again an ideal of R
c) Find all ideals N of Z_{12}
