

Reg No	•	•••••
Name	•	•••••

BSc DEGREE (CBCS) EXAMINATION, FEBRUARY 2020

Fifth Semester

Core Course - MM5CRT03 - ABSTRACT ALGEBRA

B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

8D08D53F

Time: 3 Hours

Maximum Marks :80

Part A

Answer any ten questions. Each question carries 2 marks.

- 1. Check whether usual multiplication is a binary operation on the set \mathbb{C} .
- 2. State whether the set \mathbb{Z}^+ under multiplication is a group. Justify.
- 3. Define order of an element in a group.
- 4. Show that the *permutation multiplication* is a binary operation on the collection of all permutations of a set A.
- 5. Define the **right regular representation** of a group G.
- 6. Find all orbits of the permutation $\sigma : \mathbb{Z} \to \mathbb{Z}$ where $\sigma(n) = n + 2$.
- 7. Show that every coset (left or right) of a subgroup H of a group G has the same number of elements as H.
- 8. Check whether $f: (\mathbb{R}, +) \to (\mathbb{Z}, +)$ defined by $f(x) = \lfloor x \rfloor$, the greatest integer $\leq x$ is a group homomorphism or not.
- 9. Show that S_n is not a simple group when $n \ge 3$.

10. Show that the matrix $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ is a divisor of zero in M₂(Z)

- 11. Prove that Z_p is a field if p is a prime
- 12. Give an example to show that a factor ring of an integral domain may have divisors of 0

 $(10 \times 2 = 20)$

Part B

Answer any six questions. Each question carries 5 marks.

- 13. Prove that if φ: S → S' is an isomorphism of (S,*) with (S',*'), and e is the identity element for * on S,
 then φ (e) is an identity element for *' on S'.
- 14. Prove that a subset H of a group G is a subgroup of G if and only if
 a) H is closed under the binary operation of G,
 b) the identity element e of G is in H,
 c) for all a ∈ H it is true that a⁻¹ ∈ H also.
- 15. Let G be a group and let $a \in G$. Then prove that $H = \{a^n / n \in \mathbb{Z}\}$ is a subgroup of G and is the smallest subgroup of G that contains a.
- 16. Prove from linear algebra that no permutation in S_n can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.
- 17. If $n \ge 2$, then prove that the collection of all even permutations of $\{1, 2, 3, \dots, n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_n .
- 18. Upto isomorphism find S_n/A_n
- 19. Show that A_n is a normal subgroup of S_n
- 20. Check whether Z^+ with the usual addition and multiplication is a ring
- 21. Show that $a^2 b^2 = (a + b)(a b)$ for all a and b in a Ring R If and only if R is commutative.

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

- 22. Find all subgroups of \mathbb{Z}_{36} and draw the subgroup diagram.
- 23.
- 1. Let H be a subgroup of a group G. Let the relation \sim_L be defined on G by $a \sim_L b$ if and only if $a^{-1}b \in H$. Then show that \sim_L is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a \in G$?
- 2. Let *H* be the subgroup $\langle \mu_1 \rangle = \{\rho_0, \mu_1\}$ of S_3 . Find the partitions of S_3 into left cosets of *H*, and the partition into right cosets of *H*.
- 24. Let H be a subgroup of a group G. prove that aHbH = abH defines a binary operation on G/H if and only if H is a normal subgroup of G. Then furthere show that if H is a normal subgroup of a group G then G/H is a group. under the binary operation aHbH = abH.
- a) Show that I_a = {x ∈ R/ax = 0 } is an ideal of R, R is a commutative ring and a ∈ R
 b) Show that an intersection of ideals of a ring R is again an ideal of R
 c) Find all ideals N of Z₁₂

(2×15=30)