Turn Over

QP CODE: 21101717

B.Sc DEGREE (CBCS) SPECIAL SUPPLEMENTARY EXAMINATION, JULY 2021 Fifth Semester

CORE COURSE - MM5CRT03 - ABSTRACT ALGEBRA

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science

2018 Admission Only

5A099B9E

Time: 3 Hours

Max. Marks : 80

Part A

Answer any **ten** questions. Each question carries **2** marks.

- 1. Check whether the usual multiplication is a binary operation on the set \mathbb{Z}^+ .
- 2. Define order of a group.
- 3. Define greatest common divisor of two positive integers r and s.
- 4. Define the nth dihedral group. Give the elements of the third dihedral group.
- 5. Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7 \end{pmatrix}$ in S_8 as a product of transpositions.
- 6. Show that if σ is a cycle of odd length, then σ^2 is a cycle.
- 7. Define the alternating group A_n on n letters. What is its order?
- 8. Check whether $\phi: (M_n(\mathbb{R}), +) \to (\mathbb{R}, +)$ defined by $\phi(A) =$ trace of A is a group homomorphism or not.

Page 1/3

- 9. Define inner automorphism.
- 10. Define a) ring homomorphism b) ring isomorphism

- 11. Find all solutions of the equation $x^2 + 2x + 2 = 0$ in Z₆
- 12. Give an example to show that a factor ring of an integral domain may be a field

(10×2=20)

Part B

Answer any **six** questions. Each question carries **5** marks.

- 13. Prove that $\langle \mathbb{Q}^+, *
 angle$ is a group, where * is defined by a * b = ab/2 .
- 14. Let G be a group with binary operation *. Then prove that the identity element and inverse of each element are unique in G.
- 15. Let G be a group and let $a \in G$. Then prove that $H = \{a^n / n \in \mathbb{Z}\}$ is a subgroup of G and is the smallest subgroup of G that contains a.
- 16. Let G be a group. Prove that the permutations $\rho_a: G \to G$, where $\rho_a(x) = xa$ for $a \in G$ and $x \in G$, do form a group isomorphic to G.
- 17. Suppose H and K are subgroups of a group G such that $K \le H \le G$, and suppose (H:K) and (G:H) are both finite. Then prove that (G:K) is finite, and (G:K) = (G:H)(H:K).
- 18. If $\phi: G \to G'$ is a group homomorphism, show that ϕ is one to one if and only if $\ker \phi$ is trivial.
- 19. Let a group **G** contains a nontrivial sbgroup of index 2. Show that **G** is not simple.
- 20. a) Mark each of the following true or false.
 - i) Every field is an integral domain
 - ii) The characteristic of nZ is n
 - b) Prove that Z_p is a field if p is a prime.
- 21. Prove that a ring homomorphism $\phi: R \to R'$ is a one to one map if and only if ker $\phi = \{0\}$

(6×5=30)

Part C

Answer any **two** questions.

Each question carries **15** marks.

- 22. Define isomorphism between two binary structures. Check whether $\langle \mathbb{Z}, + \rangle$ is isomorphic to $\langle 2\mathbb{Z}, + \rangle$ where + is the usual addition.
- 23.
- 1. Let H be a subgroup of a group G. Let the relation \sim_L be defined on G by $a \sim_L b$ if and only if $a^{-1}b \in H$. Then show that \sim_L is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a \in G$?
- 2. Let H be the subgroup $< \mu_1 >= \{\rho_0, \mu_1\}$ of S_3 . Find the partitions of S_3 into left cosets of H, and the partition into right cosets of H.
- 24. Let H be a subgroup of a group G. prove that aHbH = abH defines a binary operation on G/H if and only if H is a normal subgroup of G. Then furthere show that if H is a normal subgroup of a group G then G/H is a group. under the binary operation aHbH = abH.
- 25. a) Let p be a prime. Show that in a ring Z_p, (a + b)^p = a^p + b^p for all a, b ∈ Z_p
 b) Show that if a and b are nilpotent elements of a commutative ring, then a + b is also nilpotent.
 c) Show that intersection of subrings of a ring R is again a subring of R

(2×15=30)