Reg No :
Name :

B.Sc DEGREE (CBCS) SPECIAL SUPPLEMENTARY EXAMINATION, JULY 2021 Fifth Semester

CORE COURSE - MM5CRT03 - ABSTRACT ALGEBRA

Common for B.Sc Mathematics Model I \& B.Sc Mathematics Model II Computer Science

$$
\begin{aligned}
& 2018 \text { Admission Only } \\
& \text { 5A099B9E }
\end{aligned}
$$

Time: 3 Hours

Part A

Answer any ten questions.
Each question carries 2 marks.

1. Check whether the usual multiplication is a binary operation on the set \mathbb{Z}^{+}.
2. Define order of a group.
3. Define greatest common divisor of two positive integers r and s.
4. Define the nth dihedral group. Give the elements of the third dihedral group.
5. Express the permutation $\sigma=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7\end{array}\right)$ in S_{8} as a product of transpositions.
6. Show that if σ is a cycle of odd length, then σ^{2} is a cycle.
7. Define the alternating group A_{n} on n letters. What is its order?
8. Check whether $\phi:\left(M_{n}(\mathbb{R}),+\right) \rightarrow(\mathbb{R},+)$ defined by $\phi(A)=$ trace of A is a group homomorphism or not.
9. Define inner automorphism.
10. Define a) ring homomorphism b) ring isomorphism
11. Find all solutions of the equation $x^{2}+2 x+2=0$ in Z_{6}
12. Give an example to show that a factor ring of an integral domain may be a field
$(10 \times 2=20)$

Part B

Answer any six questions.
Each question carries 5 marks.
13. Prove that $\left\langle\mathbb{Q}^{+}, *\right\rangle$ is a group, where $*$ is defined by $a * b=a b / 2$.
14. Let G be a group with binary operation $*$. Then prove that the identity element and inverse of each element are unique in G.
15. Let G be a group and let $a \in G$. Then prove that $H=\left\{a^{n} / n \in \mathbb{Z}\right\}$ is a subgroup of G and is the smallest subgroup of G that contains a.
16. Let G be a group. Prove that the permutations $\rho_{a}: G \rightarrow G$, where $\rho_{a}(x)=x a$ for $a \in G$ and $x \in G$, do form a group isomorphic to G.
17. Suppose H and K are subgroups of a group G such that $K \leq H \leq G$, and suppose $(H: K)$ and $(G: H)$ are both finite. Then prove that $(G: K)$ is finite, and $(G: K)=(G: H)(H: K)$.
18. If $\phi: G \rightarrow G^{\prime}$ is a group homomorphism, show that ϕ is one to one if and only if $\operatorname{ker} \phi$ is trivial.
19. Let a group \mathbf{G} contains a nontrivial sbgroup of index 2 . Show that \mathbf{G} is not simple.
20. a) Mark each of the following true or false.
i) Every field is an integral domain
ii) The characteristic of $n Z$ is n
b) Prove that Z_{p} is a field if p is a prime.
21. Prove that a ring homomorphism $\phi: R \rightarrow R^{\prime}$ is a one to one map if and only if $\operatorname{ker} \phi=\{0\}$

Part C

Answer any two questions.
Each question carries 15 marks.
22. Define isomorphism between two binary structures. Check whether $\langle\mathbb{Z},+\rangle$ is isomorphic to $\langle 2 \mathbb{Z},+\rangle$ where + is the usual addition.
23.

1. Let H be a subgroup of a group G. Let the relation \sim_{L} be defined on G by $a \sim_{L} b$ if and only if $a^{-1} b \in H$. Then show that \sim_{L} is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a \in G$?
2. Let H be the subgroup $<\mu_{1}>=\left\{\rho_{0}, \mu_{1}\right\}$ of S_{3}. Find the partitions of S_{3} into left cosets of H, and the partition into right cosets of H.
3. Let H be a subgroup of a group G . prove that $a H b H=a b H$ defines a binary operation on G / H if and only if H is a normal subgroup of G . Then furthere show that if H is a normal subgroup of a group G then G / H is a group. under the binary operation $a H b H=a b H$.
4. a) Let p be a prime. Show that in a ring $\mathrm{Z}_{\mathrm{p}},(\mathrm{a}+\mathrm{b})^{\mathrm{p}}=\mathrm{a}^{\mathrm{p}}+\mathrm{b}^{\mathrm{p}}$ for all $a, b \in Z_{p}$
b) Show that if a and b are nilpotent elements of a commutative ring, then $\mathrm{a}+\mathrm{b}$ is also nilpotent.
c) Show that intersection of subrings of a ring R is again a subring of R
