QP CODE: 21002033

Reg No 2 Name 2

Weightage: 30

M Sc DEGREE (CSS) EXAMINATION, NOVEMBER 2021

First Semester

CORE - ME010101 - ABSTRACT ALGEBRA

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)

2019 ADMISSION ONWARDS

22D13FAD

Time: 3 Hours

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Check whether the group $\mathbb{Z}_2 \times \mathbb{Z}_3$ is cyclic.
- 2. Is every group a ^G set? Justify your answer.
- 3. Let G be an abelian group. Show that the elements of finite order in G form a subgroup.
- 4. Find the kernel of the homomorphism $\phi : \mathbb{Z}_{18} \to \mathbb{Z}_{12}$, where $\phi(1) = 10$.
- 5. Define (a) p-subgroup and (b) Sylow p-subgroup of a group G with examples.
- 6. Prove that every group of prime-power order is solvable.
- 7. Compute the evaluation homomorphism $\phi_2(x^2+3)$, $F=E=\mathbb{C}$
- 8. Check $25x^5 9x^4 3x^2 12$ is irreducible over \mathbb{Q}
- 9. Define ideal of a ring. Give an example.
- 10. Find atleast one $c \in \mathbb{Z}_5$ such that $\mathbb{Z}_5[x]/(x^2 + cx + 1)$ is a field.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Are the groups $\mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_{24}$ and $\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{40}$ isomorphic? Why or why not?
- 12. Show that the set of all $g \in G$ such that $i_g: G \to G$ is the identity inner automorphism i_e is a normal subgroup of a group G

13. Let G be a group of order p^n and let X be a finite G-set. Prove that $|X| \equiv |X_G| \pmod{p}$.

- 14. If p and q are distinct primes with p < q, then prove that every group G of order pq is not simple. Furthermore, if q is not congruent to 1 modulo p, then prove that G is abelian.
- 15. Prove that the set G_n of non zero elements of \mathbb{Z}_n that are not zero divisors forms a group under multiplication modulo n.
- 16. Let F be the desired field of quotients of an integral domain D. For [(a,b)] and [(c,d)] in F the addition is defined as [(a,b)] + [(c,d)] = [(ad+bc,bd)]. Show that addition is commutative and associative.
- 17. Show that if R, R' and R'' are rings and if $\phi : R \to R'$ and $\psi : R' \to R''$ are homomorphisms, then the composite function $\psi : R' \to R''$ is a homomorphism.
- 18. Explain prime ideal and maximal ideal of a ring and give examples.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- 19. (a) Let X be a G set. Prove that $\{g \in G/gx = x\}$ is a subgroup of G for each $x \in X$. (b) Let X be a G - set and let $x \in X$. Prove that $|Gx| = (G:G_x)$. Also prove that if |G| is finite, then |Gx| is a divisor of |G|.
- 20. (a) State and prove third Sylow theorem.(b) Prove that no group of order 42 is simple.
- (a) Explain the division algorithm in F[x].
 (b) If G is a finite subgroup of the multiplicative group of a field F, then prove that G is cyclic.
- 22. If G is any group and R is a commutative ring with nonzero unity, then show that group ring (RG,+, .) is a ring.

(2×5=10 weightage)