COURSE OUTCOMES

CORE COURSES

Semester-I

PH1CRT01: METHODOLOGY AND PERSPECTIVES OF PHYSICS

On successful completion of the course, the students will be able to

- **CO1** Construct the insight of the Development of physics in the last century and list out the contributions of great scientists.
- **CO2 Compare and contrast** the Contributions of Indian physicists.
- **CO3 Identify** basic concepts, theories and principles and its applications of physics in everyday life.
- **CO4** *Use* the operations with basic number systems and **identify** its applications in digital electronics.
- **CO5 - Construct** the idea of application of vectors in physics and **illustrate** it with examples.
- **CO6 - Examine and describe** Experimental methods and error analysis.

Semester-II

PH2CRT02: MECHANICS AND PROPERTIES OF MATTER

On successful completion of the course, the students will be able to

- **CO1 Describe** the concept of wave motion and able to **construct** different models describing wave motion.
- CO2 Analyse different phenomena associated with wave motion.
- **CO3** Explain oscillatory motion and design and classify different oscillators.
- **CO4** Explain different terms associated with rotational mechanics and obtain solutions to physical problems of rotational mechanics.
- **CO5 - Construct** an idea of properties of solids and **illustrate** use of material with their properties.
- **CO6 - Construct** an idea of properties of liquids and **explain** different phenomena associated with it.

Semester-III

PH3CRT03: OPTICS, LASER AND FIBER OPTICS

On successful completion of the course, the students will be able to

- CO1 Discuss the interference phenomenon and explain the significance of it by illustrating examples.
- **CO2** Resolving numerical examples of interference in different context.
- CO3 List out different types of diffraction and categorise various physical problems of diffraction.
- **CO4** Explain the concept of polarization and describe various theorems of it.
- CO5 Design and illustrate Polaroids and find the applications of it.
- **CO6 Explain** the working of laser and **compare** different types of lasers. **Predict** the applications of lasers including working of optical fiber.

Semester-IV

PH4CRT04: SEMICONDUCTOR PHYSICS

On successful completion of the course, the students will be able to

- CO1 Describe the properties of materials and application of semiconductor electronics
- **CO2 Apply** the knowledge of semiconductors to **illustrate** the functioning of basic electronic devices.
- **CO3 Demonstrate** the switching and amplification application of the semiconductor devices.
- CO4 Demonstrate the control applications using semiconductor devices.
- CO5 Identify the fabrication methods of integrated circuits.
- CO6 Classify and describe the semiconductor devices for special applications.

SEMESTER V

PH5CRT05: ELECTRICITY AND ELECTRODYNAMICS

- **CO1** Discuss the theory of moving coil ballistic galvanometer.
- **CO2** Discuss variation of alternating current with time and define basic parameters and determine mean value and rms values of ac.

- CO3 Analyse LCR series circuits and LCR parallel resonant circuit
- **CO4** Illustrate Superposition, Reciprocity, Thevenin's, Norton's & Daximum power transfer theorems and describe Maxwell's equations in different media.
- CO5 Explain Seebeck effect, Laws of thermo emf, Peltier effect and Thomson effect
- **CO6** Apply Gauss's law in different cases: solid sphere, infinite wire, infinite plane sheet and Discuss the Propagation of electromagnetic waves in different media.

PH5CRT06: CLASSICAL AND QUANTUM MECHANICS

- **CO1** Describe principle of virtual work and D'Alembert's principle
- **CO2** Solve Linear Harmonic oscillator, Planetary motion and Simple Pendulum problems using Lagrange's equation of motion
- **CO3** Illustrate Calculus of variations to find out Euler Lagrange's equations for shortest distance between two points, Brachistochrone problem
- **CO4** Identify the limitations of classical mechanics and find the need of quantum mechanics
- **CO5** Explain the time dependant Schrodinger equation for wave function and examine the Harmonic Oscillator problem in the perspective of quantum mechanics
- **CO6** Discuss the historical development and origin of quantum theory and state the postulates of quantum mechanics

PH5CRT07: DIGITAL ELECTRONICS AND PROGRAMMING

- **CO1** Compare Digital and analog systems, compare operators, logic symbols and truth tables of different logic gates.
- **CO2** Summarize combinational and sequential logic systems
- **CO3** Use Sum of product method, product of sum method for reducing Boolean expressions and solve Boolean functions using Karnaugh map.
- **CO4** Compare and contrast encoders, decoders, multiplexers and demultiplexers.
- **CO5** Illustrate and classify Flip-flops, Registers and Counters.
- **CO6** Construct C++ programs using loops

PH5CRT08: ENVIRONMENTAL PHYSICS AND HUMAN RIGHTS

CO1 Explain the Causes, effects and control measures of environmental pollution

- **CO2** Discuss environmental ethics and various environment protection acts such as air act, water act, wildlife protection act and forest conservation act
- **CO3** Categorize renewable and non-renewable energy sources
- **CO4** Classify solar heat energy convertors such as solar cooker, solar still, solar dryer, solar pond and Summarize the need and characteristics of solar photovoltaic (PV) systems
- **CO5** Classify three Generations of Human Rights (Civil and Political Rights; Economic, Social and Cultural Rights) and Discuss fundamental human rights in Indian Constitution
- **CO6** Identify the relationship between Conservation of natural resources and human rights

Open Course

PH5OPT02 - Physics in Daily Life

- **CO1** Recall Fundamental and derived quantities, Units and dimensions
- **CO2** Distinguish between Fundamental phenomenon of light such as reflection, refraction, diffraction, interference and scattering
- **CO3** Apply the knowledge of lens in correcting defects of the eye myopia, hypermetropia, presbyopia and astigmatism
- **CO4** Develop the basic idea of Voltage and current, ohms law, Electric energy, electric power and calculation of energy
- CO5 Discuss different phases of matter and different forms of energy
- **CO6** Develop idea of Universe Planets, solar system, lunar and solar eclipses, constellations, different types of stars, Galaxies, black hole, Satellites, Artificial satellites

Semester-VI

PH6CRT09: THERMAL AND STATISTICAL PHYSICS

- **CO1** Apply first law of Thermodynamics to isochoric process, isobaric process and adiabatic process.
- **CO2** Describe the parts of heat engines and apply Second law to explain the working of Carnot Refrigerator
- CO3 Understand the concept of entropy and change in entropy.
- **CO4** Establish the relation of thermodynamic potentials with their variables.
- **CO5** Understand the temperature dependence of black body radiation.

CO6 Discuss the need for quantum statistics to derive Bose – Einstein and Fermi – Dirac distribution laws and find application of B- E and F- D statistics.

PH6CRT10: RELATIVITY AND SPECTROSCOPY

- **CO1** Extend the Lorentz transformation to concepts of Length contraction, time dilation and relativistic Mass.
- **CO2** Outline the introductory concepts of general theory of relativity.
- CO3 Describe Vector Atom model and discuss Zeeman Effect
- **CO4** Summarize the principle of Nuclear magnetic Resonance (NMR) and of Electron spin resonance (ESR)
- **CO5** Examine the Rotational and Vibrational Spectra of diatomic molecules
- CO6 Compare and explain IR, Microwave and Raman Scattering spectroscopes

PH6CRT11: NUCLEAR, PARTICLE PHYSICS AND ASTROPHYSICS

- CO1 Illustrate General properties of nucleus and classify Models of Nuclear structure
- CO2 Compare and explain Nuclear Radiation Detectors, Counters and Particle Accelerators
- CO3 Describe Gamow's theory of α decay and explain the working of Nuclear fission and Nuclear fusion reactors
- **CO4** Classify elementary particles and instantiate the quark model of elementary particles
- CO5 Distinguish Latitude effect, Azimuth effect and Altitude effect of cosmic rays
- **CO6** Illustrate stellar evolution and classify different types of stars

PH6CRT12: SOLID STATE PHYSICS

- **CO1** Define the fundamental terms needed to study the structure of a crystal and distinguish the different crystal structures with examples.
- CO2 Discuss the classical and quantum theories of free electron model.
- CO3 Discuss band theory qualitatively using Kronig Penney model.
- **CO4** Explain the phenomenon of superconductivity and discuss the fundamental properties of superconductors.

- **CO5** Define Josephson effect and discuss how it is used in SQUIDs.
- **CO6** Explain BCS theory of superconductivity qualitatively.

Choice Based Course

PH6CBT03: COMPUTATIONAL PHYSICS

- **CO1** Solve Nonlinear Equations by Bisection, Newton Raphson, Regula-Falsi, Secant and Fixed point iteration methods
- **CO2** Solve system of linear algebraic equations by Gauss elimination method, Gauss-Jordan method Factorization and Iterative methods
- **CO3** Apply Regression and interpolation methods in Curve fitting
- CO4 Explain trapezoidal rule and Simpson's 1/3 and 1/8 rule for numerical integration
- **CO5** Explain Euler's method and first and second order Runge-Kutta method to find the numerical solution of differential equation
- **CO6** Compose and write algorithms of various computational problems

Physics Core Practical

SEMESTER I & II (First Year)

Core Practical 1: PH2CRP01 – Mechanics and Properties of Matter On successful completion of the course, the students will be able to

- CO1 Determine viscosity of a liquid by Variable and constant pressure head methods
- CO2 Determine the surface tension and viscosity of fluid by different experimental techniques
- CO3 Verify the expression for young's modulus by analysing bending behaviour beams
- Apply the knowledge of dynamics of different types of pendulum to determine 'g'.
- CO5- Verify and illustrate the concept of moment of inertia and its significance.
- CO6 Determine the elastic behaviour and working of torsional pendulum.

SEMESTER III & IV (Second Year)

Core Practical 02: PH4CRP02 —Optics and Semiconductor Physics On successful completion of the course, the students will be able to

CO1 – Determine refractive index of material of the prism and liquid by using spectrometer

CO2	Distinguish between P-N junction diode and Zener diode.
CO3	Demonstrate voltage regulation using Zener diode
CO4	Determine focal length of lens and optical constants of different media.
CO5	Illustrate the theory and experiment of interference using air wedge and newtons rings
CO6	Construct half wave, full wave and bridge rectifiers

SEMESTER V & VI Core Practical :03

PH6CRP03 - Electricity, Magnetism and LASER

- **CO1** Measure resistance of wire, convert galvanometer into voltmeter and ammeter and Calibrate ammeter, low range and high range voltmeter using Potentiometer
- **CO2** Find m and Bh and sketch magnetic flux variation using field along the axis of a circular coil
- **CO3** Find magnetic moment of a bar magnet using Searle's vibration magnetometer
- **CO4** Determine wavelength of Laser using Grating and determine slit width by Single slit diffraction using laser
- **CO5** Measure resistivity of wire using Carey Foster's bridge.
- **CO6** Verify Thevenin's and Norton's theorems

Core Practical:04

PH6CRP04 – Digital Electronics

- **CO1** Realize logic gates AND, OR and NOT Using diodes, transistors etc. and using universal gates
- **CO2** Verification of truth table of NAND, NOR, XOR and XNOR gates and verify De Morgan's theorems using IC 7400
- CO3 Construct and verify A/D converter using IC 741 and BCD to 7 segment decoder
- **CO4** Realize Half adder using gates and verify its truth table
- CO5 Construct Astable and Monostable Multivibrator using Transistor and IC 555
- CO6 Construct SR and JK Flip Flops using IC 7400 & 7410 and verify truth table

Core Practical:05

PH6CRP05 – Thermal Physics, Spectroscopy and C++ Programming

- CO1 Use Thermistor and Carey Foster's bridge to find Temperature coefficient of resistance
- **CO2** Write and execute Computer programming in C++ to generate Fibonacci series and to convert a decimal number into binary number
- **CO3** Write and execute Computer programming in C++ to Solve a quadratic equation and for sorting the numbers in ascending and descending order
- **CO4** Calculate 'g' from experimental data of Simple Pendulum using Computer programming in C++
- **CO5** Write and execute Computer programming in C++ to Convert temperature scale
- **CO6** Find Dispersive power and Resolving power of grating and prism using Spectrometer and find Cauchy's constants

Core Practical:06

PH6CRP06 – Acoustics, Photonics and Advanced Semiconductor Physics

- **CO1** Use Sonometer to Determine frequency of AC
- **CO2** Determine frequency of given tuning fork, unknown mass and verification of laws of strings using sonometer and Melde's string
- CO3 Measure and draw V- I characteristics of solar cell and different colours of LED
- **CO4** Construct and study Weinbridge Oscillator using IC 741 and Pulse Width Modulator using IC 555
- **CO5** Construct Regulated power supply using Zener diode and IC 741 and study line and load regulations
- **CO6** Construct and study Voltage multipliers Doubler & Tripler

PH6PRO01 – Project and Industrial Visit

- **CO1** Identify the need of lifelong learning and adapt to changing needs of profession and society and get updated with current state-of-art
- **CO2** Express ideas clearly and effectively, both verbally and in written form.
- **CO3** Find links across different areas of knowledge and generate, develop and evaluate ideas and information related to the project.

CO4	Develops ability to work with peers, building teamwork and group skills.
CO5	Inspect and realize practical working environment and industrial practices.