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Chapter 1

Introduction

The origin of ‘Graph Theory’ dates back to more than two hundred and seventy

years when the famous Swiss Mathematician Leonhard Euler ( 1707 - 1783) solved the

‘Konig̈sberg Bridge Problem’ in a talk entitled ‘The solution of a problem relating to

the geometry of position’ presented at the St.Petersberg Academy on 26th August, 1735.

Since then, the subject has grown both in its theory and its varied applications, initiated

by the works of such greats as W.R. Hamilton, De Morgan, A. Cayley and P. J. Heawood.

The celebrated ‘4 Color Problem’ which was a major unsolved problem since 1852 and its

unique method of solution using computers in 1976 - the first of its kind in Mathematics,

also belongs to Graph Theory. In 1874, A. Cayley realized that the problem of finding

the number of different paraffines with the formula CnH2n+2 is essentially the same as

the problem of counting the number of unrooted trees with n vertices, where no vertex

has valency exceeding four. But it was J. J. Sylvester who first used the term ‘graph’ in

his celebrated paper ‘Chemistry and Algebra’ in 1877.

The first book on graph theory was written by D. König [7]. Later, C. Berge

[8], O. Ore [9] and F. Harary [10] also wrote the first set of books in this subject. N.L.

Biggs, E. K. Lloyd and R. J. Wilson [11] has discussed in detail, with the extracts of
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CHAPTER 1. INTRODUCTION 2

original work, the growth of graph theory. F. S. Roberts [12] has dealt with a variety of

applications of graphs in engineering, technology, biological sciences, archeology, ecology,

planning etc. This includes its applications in transportation problems, communication,

study of food webs in ecology, round - robin tournament in tennis, the theory of structural

balance in sociology etc. In [13], connections of graph theory with other branches of

mathematics such as number theory, coding theory are discussed.

The computation of various graph polynomials and the associated spectra have been

the topic of many investigations in the recent years. While the problem of computing

the characteristic polynomial of adjacency matrix and its spectrum appears to be solved

for many large graphs, the related distance polynomial has received much less attention.

The idea of distance matrix seems a natural generalization, re ects the structure of the

graph in a better way than that of an adjacency matrix . Distance matrix and its spectra

have arisen independently from a data communication problem studied by Graham and

Pollack in 1971 in which the most important feature is the number of negative eigen-

values of the distance matrix. The distance matrix is more complex than the ordinary

adjacency matrix of a graph since the distance matrix is a complete matrix (dense) while

the adjacency matrix is more often sparse. Thus the computation of the characteristic

polynomial of the distance matrix is computationally a much more difficult problem and,

in general, there are no simple analytical solutions except those for a few trees For this

reason, distance polynomials of only trees have been studied extensively in the math-

ematical literature . In This report we study some concepts on distance spectrum of

graphs. Recent developments in graph spectra are also available in the spectral graph

theory home page, www.sgt.pep.ufrj.br.

Seven research papers are published in international scientific journals under this

minor research project. The copies are appended herewith which in turn completes this

report.



Chapter 2

Major findings

Let G be a connected graph with V (G) = {v1, v2, . . . , . . . , vp} and size q. The

distance matrix or D− matrix, D of G is defined as D = [dij ] where dij is the distance

between vi and vj in G. The eigenvalues of the D− matrix of G are called the D−

eigenvalues of G and form the D− spectrum of G denoted by specD(G). In this chapter

we list all the major findings we obtained under this minor research project.

2.1 On distance energy of graphs and a pair of D-equienergetic

graphs

Theorem 2.1. Let G be an r− regular graph of diameter 2 with spec(G) = {r, λ2, ......, λp}.

Then specD(G) = {2p− r − 2,− (λ2 + 2) , ......,− (λp + 2)}.

Theorem 2.2. Let G be an r− regular graph of diameter 1 or 2 with an adjacency

matrix A and spec(G) = {λ1, λ2, ........, λp}. Then H = G×K2 is r + 1− regular and of

3



CHAPTER 2. MAJOR FINDINGS 4

diameter 2 or 3 with

specD(H) =

 5p− 2(r + 2) −2 (λi + 2) −p 0

1 1 1 p− 1

 , i = 2 to p

Theorem 2.3. The distance energy of the wheel graph is given by ED(W1,p) = 2(p−2+√
p2 − 3p+ 4).

Theorem 2.4. Let G be a (p, q) graph of diameter 2 and µ1 be the greatest D− eigen-

value. Then µ1 ≥
2p2 − 2q − 2p

p
. The equality holds if and only if G is a regular graph.

Theorem 2.5. Let ∆ be the absolute value of the determinant of the distance matrix D

of G. Then

√
(4p (p− 1)− 6q) + p (p− 1) ∆2/p 6 ED (G) 6

√
2p (2p2 − 3q − 2p)

Theorem 2.6. Let G be a r− regular graph of diameter 2. Then

ED 6 2p− r − 2 +

√
(p− 1)

[
p (r + 4)− (r + 2)2

]

Theorem 2.7. For any graph G of diameter 2,

ED 6
1

p

{
2p2 − 2q − 2p+

√
(p− 1) [(2p+ q) (2p2 − 4q)− 4p2]

}

Theorem 2.8. Let G be a connected r− regular graph on p vertices with spec(G) =

{λ1, λ2, ....., λp}. Then

specD(G∇G) =

 3p− r − 2 p− r − 2 − (λi + 2)

1 1 2


Theorem 2.9. For every p ≡ 0(mod6) ≥ 18, there exists a pair of equi D− energetic

regular graphs.



CHAPTER 2. MAJOR FINDINGS 5

2.2 On the distance spectra of some graphs

In this section the D-spectra of some graphs and their D-energies are calculated. A pair

of D-equienergetic bipartite graphs on 24 t , t ≥ 3 , vertices is constructed.

Theorem 2.10. Let M be a real symmetric irreducible square matrix of order p in which

each row sum is equal to a constant k .Then there exists a polynomial Q(x) such that

Q(M) = J , where J is the all one square matrix whose order is same as that of M .

Theorem 2.11. Let D be the distance matrix of a connected distance regular graph G .

Then D is irreducible and there exists a polynomial P (x) such that P (D) = J . In this

case

P (x) = p× (x− λ2)(x− λ3) · · · (x− λg)

(k − λ2)(k − λ3) . . . (k − λg)

where k is the unique sum of each row which is also the greatest simple eigenvalue of D ,

whereas λ2, λ3, . . . , λg are the other distinct eigenvalues of D .

Theorem 2.12. Let G be a graph with distance spectrum specD(G) = {µ1, µ2, . . . , µp} .

Then

specD(D2G) =

 2 (µi + 1) −2

1 p

 , i = 1, 2, . . . , p .

Theorem 2.13. ED(D2C2n) = 4n(n+ 1) .

Theorem 2.14. Let G be a distance regular graph with distance regularity k , distance

matrix D , and D-spectrum {µ1 = k, µ2, . . . , µp} . Then

specD(G×K2) =

 2k + p −p 2µi 0

1 1 1 p− 1

 , i = 2, 3, . . . , p .

Theorem 2.15. Let G be a connected distance regular graph with distance regularity k ,

distance matrix D , and specD(G) = {µ1 = k, µ2, . . . , µp} . Then specD(G ◦K1) consists
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of the numbers

p+ k − 1 +
√

(p+ k)2 + (p− 1)2 , p+ k − 1−
√

(p+ k)2 + (p− 1)2

µi − 1 +
√
µ2i + 1 , µi − 1−

√
µ2i + 1 , i = 2, 3, . . . , p .

Theorem 2.16. Let G be a connected graph with distance spectrum specD(G) = {µ1 =

k, µ2, . . . , µp} . Then

specD(G[K2]) =

 2µi + 1 −1

1 p

 , i = 1, 2, . . . , p .

Theorem 2.17. Let G be an r-regular graph of diameter 2 on p vertices with (ordinary)

spectrum {r, λ2, . . . , λp} . Then the D-spectrum of the EDC-graph of G consists of the

numbers 5p− 2r − 4 , 2r − p , −2 (λi + 2) , i = 2, 3, . . . , p , and 2λi , i = 2, 3, . . . , p .

Theorem 2.18. There exists a pair of regular non-D-cospectral D-equienergetic bipartite

graphs on 24 t vertices, for each t ≥ 3 .
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2.3 Distance spectrum of graph compositions

In this section we obtain the D− spectrum of the cartesian product of two distance

regular graphs. The D− spectrum of the lexicographic product G[H] of two graphs

G and H when H is regular is also obtained. The D− eigenvalues of the Hamming

graphs Ham(d, n) of diameter d and order nd and those of the C4 nanotori , Tk,m,C4 are

determined.

Theorem 2.19. Let G and H be two distance regular graphs on p and n vertices

with distance regularity k and t respectively. Let specD(G) = {k, µ2, µ3, ....., µp} and

specD(H) = {t, η2, η3, ....., ηn}. Then

specD(G+H) = {nk + pt, nµi, pηj , 0}

i = 2, ..., p , j = 2, ..., n and 0 is with multiplicity (p− 1)(n− 1).

Theorem 2.20. Let Ham(d, n) be the Hamming graph of characteristic n. Then the

D− eigenvalues of Ham(d, n) are dnd−1 (n− 1), 0 and −nd−1 with multiplicities 1, nd−

d(n− 1)− 1 and d (n− 1) respectively.

Theorem 2.21. The distance spectrum of the C4 nanotori , Tk,m,C4 consists of the fol-

lowing numbers

(m+ k) (mk − 1)

4
,−m

4
sec2

(
πj

2k

)
,−m

4
cosec2

(πr
2k

)
,−k

4
sec2

(
πt

2m

)
,−k

4
cosec2

(
πl

2m

)
where j ∈ {1, 2, ...., k − 1} and even, r ∈ {1, 2, ...., k − 1} and odd

t ∈ {1, 2, ....,m− 1} and even and l ∈ {1, 2, ....,m− 1} and odd

together with 0 of multiplicity (m− 1)(k − 1).

Theorem 2.22. Let G be a graph with D− matrix DG and H , an r− regular graph with

an adjacency matrix A. Let specD(G) = {µ1, µ2, ......, µp} and the ordinary spectrum of
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H be {r, λ2, λ3, ......, λn}. Then

specDG[H] =

 nµi + 2n− r − 2 − (λj + 2)

1 p

 , i = 1 to p and j = 2 to n− 1
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2.4 D− equienergetic self - complementary graphs

In this section we describe here the distance spectrum of the P4 join-based self - com-

plementary graphs in the terms of their adjacency spectrum. These results are used to

show that there exists D− equienergetic self - complementary graphs of order p = 48t

and 24(2t+ 1), t ≥ 4

Theorem 2.23. Let G be a connected k− regular graph on n vertices , with an adjacency

matrix A and spectrum {k, λ2, . . . , . . . , λn}. Then the distance spectrum of H consists of

−(λi +2) and λi−1 , i = 2, 3, ..., ..., n, each with multiplicity 2 together with the numbers

1

2

[
7n− 3±

√
(2k + 1)2 + 45n2 − 12nk − 6n

]
and −1

2

[
n+ 3±

√
(2k + 1)2 + 5n2 + 4nk + 2n

]

Theorem 2.24. For every n ≥ 8 , there exists a pair of 4− regular non-cospectral graphs

on n vertices.

Theorem 2.25. Let G be a connected 4− regular graph on n vertices , with an adjacency

matrix A and spectrum {4, λ2, . . . , . . . , λn}. Let H = L2(G) and H be the P4 self-

complementary graph obtained from H.Then ED(H) = 3[8(3n− 1) +
√

20n2 + 28n+ 49]

Theorem 2.26. For every p = 48t or 24(2t + 1) , t ≥ 4 , there exists a pair of D−

equienergetic self-complementary graphs.
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2.5 Sharp bounds on the distance spectral radius and the

distance energy of graphs

In this section we obtain some lower bounds for the distance spectral radius µ1 and

characterize those graphs for which these bounds are best possible. We also obtain an

upperbound for ED(G) and determine those maximal D− energy graphs.

Theorem 2.27. Let G be a graph with Wiener index W . Then µ1 ≥
2W

p
and the

equality holds if and only if G is distance regular.

Theorem 2.28. Let G be a graph with distance degree sequence {D1, D2, . . . , . . . , Dp}.

Then

µ1 >

√
D2

1 +D2
2 +D2

3 + ........+D2
p

p

The equality holds if and only if G is distance regular.

Theorem 2.29. Let G be a graph with distance degree sequence {D1, D2, . . . , . . . , Dp}

and second distance degree sequence {T1, T2, . . . , . . . , Tp}. Then

µ1 >

√
T 2
1 + T 2

2 + T 2
3 + ........+ T 2

p

D2
1 +D2

2 +D2
3 + ........+D2

p

Equality holds if and only if G is pseudo distance regular.

Theorem 2.30. Let G be graph with Wiener index W and distance degree

sequence {D1, D2, . . . , . . . , Dp}. Then

µ1 >Max
i

1

p− 1

(
(W −Di) +

√
(W −Di)

2 + (p− 1)D2
i

)
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Theorem 2.31. With the notations described above

ED (G) 6

√√√√√√√
p∑

i=1
T 2
i

p∑
i=1

D2
i

+ (p− 1)

√√√√√√√S −

p∑
i=1

T 2
i

p∑
i=1

D2
i

where S is the sum of the squares of entries in the distance matrix. Equality holds if and

only if either G is a complete graph or a pseudo k− distance regular graph with three

distinct D− eigenvalues

(
k,

√
S − k2

p− 1
,−

√
S − k2

p− 1

)
.
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2.6 The distance spectrum and energy of the compositions

of regular graphs

We describe here the distance spectrum and energy of the join-based compositions of

regular graphs in the terms of their adjacency spectrum. These results are used to show

that there exists a number of families of sets of noncospectral graphs with equal distance

energy, such that for any n ∈ N, each family contains a set with at least n graphs. The

simplest such family consists of sets of complete bipartite graphs.

Theorem 2.32. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and eigen-

values of the adjacency matrix AGi, λi,1 = ri ≥ λi,2 ≥ λi,2 ≥ · · · ≥ λi,ni. The distance

spectrum of G1∇G2 consists of eigenvalues −λi,j −2 for i = 1, 2 and j = 2, 3, . . . , ni and

two more eigenvalues of the form

n1 + n2 − 2− r1 + r2
2

±

√(
n1 − n2 −

r1 − r2
2

)2

+ n1n2. (2.1)

Theorem 2.33. For i = 1, 2, let Gi be an ri-regular graph with ni vertices, whose

smallest eigenvalue of the adjacency matrix is at least −2 and such that Gi 6∼= Kn. Then

DE(G1∇G2) = 4(n1 + n2)− 2(r1 + r2)− 8.

Theorem 2.34. For i = 0, 1, 2, let Gi be an ri-regular graph with ni vertices and eigen-

values λi,1 = ri ≥ λi,2 ≥ λi,2 ≥ · · · ≥ λi,ni of the adjacency matrix AGi. If r1 6= r2, then

the distance spectrum of G0∇(G1 ∪ G2) consists of eigenvalues −λi,j − 2 for i = 0, 1, 2

and j = 2, 3, . . . , ni and three more eigenvalues which are solutions of the cubic equation

in ν:

(2n0 − r0 − 2− ν)(ν + r1 + 2)(ν + r2 + 2)

+[2(ν + r0 + 2)− 3n0][n1(ν + r2 + 2) + n2(ν + r1 + 2)] = 0. (2.2)
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Theorem 2.35. Graphs K1∇(CP ∪G), P ∈ Pn, form a set of DE-equienergetic graphs.
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Abstract

The D-eigenvalues of a graph G are the eigenvalues of its distance matrix D , and the
D-energy ED(G) is the sum of the absolute values of its D-eigenvalues. Two graphs are
said to be D-equienergetic if they have the same D-energy. In this note we obtain bounds
for the distance spectral radius and D-energy of graphs of diameter 2. Pairs of equiregular
D-equienergetic graphs of diameter 2, on p = 3t + 1 vertices are also constructed.

INTRODUCTION

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vp} and size

(= number of edges) q . The distance matrix or D-matrix, D , of G is defined as

MATCH 
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D = [dij] , where dij is the distance between the vertices vi and vj in G . The

eigenvalues µ1, µ2, . . . , µp of the D-matrix of G are said to be the D-eigenvalues of G

and to form the D-spectrum of G , denoted by specD(G) .

Since the D-matrix of G is symmetric, all of its eigenvalues are real and can be

ordered as µ1 ≥ µ2 ≥ · · · ≥ µp . Two graphs G and H are said to be D-cospectral if

specD(G) = specD(H) . The D-energy ED(G) of G is defined as

ED(G) =

p∑
i=1

|µi| . (1)

Eq. (1) is put forward in full analogy to the definition of the (ordinary) graph energy

E , namely

E(G) =

p∑
i=1

|λi| (2)

where λ1, λ2, . . . , λp are the eigenvalues of the adjacency matrix of G . For basic

facts on graph energy E see the book [11]; for the most recent research on E see

[10,12,14–16,25,28,29,31,32].

Two graphs with the same D-energy are called D-equienergetic. We are, of course,

interested in D-equienergetic graphs only if these are not D-cospectral.

The characteristic polynomial of the D-matrix and the corresponding spectrum

were considered in [6–9,13,30]. The D-energy seems to be defined here for the first

time.

In this paper we are concerned with the D-spectra and D-energies of graphs of

diameter 2. Moore and Moser showed [3] that almost all graphs are of diameter two.

Thus a discussion of graphs of small diameter pertains to almost all graphs.

This paper is organized as follows. In the next section we establish the distance

spectrum of some graphs of diameter 2 and 3. In the following section a lower bound

for the largest eigenvalue of D , and bounds for the D-energy are obtained. In the

last section some pairs of equiregular D-equienergetic graphs of diameter 2 are con-

structed.

All graphs considered in this paper are simple. Our spectral graph theoretic

terminology follows that of the book [4].

We shall need the following lemmas.
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Lemma 1 [4]. Let G be a graph with an adjacency matrix A and spec(G) =

{λ1, λ2, . . . , λp} . Then det A =
p∏

i=1

λi . In addition, for any polynomial P (x) , P (λ)

is an eigenvalue of P (A) and hence det P (A) =
p∏

i=1

P (λi) .

Lemma 2 [5]. Let

A =

[
A0 A1

A1 A0

]

be a symmetric 2 × 2 block matrix. Then the spectrum of A is the union of the

spectra of A0 + A1 and A0 − A1 .

Lemma 3 [4]. Let M, N,P, Q be matrices, and let M be invertible. Let

S =

[
M N
P Q

]
.

Then det S = det M · det [Q− PM−1N ] . If M and P commute, then det S =

det[MQ− PN ] .

Lemma 4 [4]. Let G be an r-regular connected graph, r ≥ 3 , with spec(G) =

{r, λ2, . . . , λp} . Then

spec(L(G)) =

(
2r − 2 λ2 + r − 2 · · · λp + r − 2 −2

1 1 · · · 1 p(r − 2)/2

)
.

Lemma 5 [4]. Let G be an r-regular connected graph on p vertices with an adjacency

matrix A , and let r, λ2, . . . , λm be its distinct eigenvalues. Let J be the all-one square

matrix of order p . Then there exists a polynomial P (x) such that P (A) = J , and

P (x) = p
(x− λ2)(x− λ3) · · · (x− λm)

(r − λ2)(r − λ3) · · · (r − λm)

so that P (r) = p and P (λi) = 0 , for all λi 6= r .

Lemma 6 [4,19]. For every t ≥ 3 , there exists a pair of non-cospectral cubic graphs

on 2t vertices.

THE DISTANCE SPECTRUM OF SOME GRAPHS

In this section we calculate the distance spectrum of some graphs of diameter 2

or 3. The distance energy of some particular graphs are also obtained.
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Graphs of diameter 2

Let G be a graph of diameter 2, A its adjacency matrix, and A the adjacency

matrix of its complement G . Then d(u, v) = 1 if u adj v in G , and d(u, v) = 2 if u

adj v in G . Thus the distance matrix of G is A + 2A .

Lemma 7. Let G be a (p, q)-graph of diameter 2, and let its D-eigenvalues be

µ1, µ2, . . . , µp . Then
p∑

i=1

µ2
i = 2(2 p2 − 2p− 3q) .

Proof. In the distance matrix D of G there are 2q elements equal to unity, and

p(p− 1)− 2q elements equal to two. Therefore,

p∑
i=1

µ2
i =

p∑
i=1

(D2)ii =

p∑
i=1

p∑
j=1

dij dji =

p∑
i=1

p∑
j=1

(dij)
2

= (2q) · 12 + (p2 − p− 2q) · 22

and the lemma follows. ¤

Theorem 1. Let G be an r-regular graph of diameter 2, and let its (ordinary)

spectrum be spec(G) = {r, λ2, . . . , λp} . Then the D-spectrum of G is specD(G) =

{2p− r − 2,− (λ2 + 2) , . . . ,− (λp + 2)} .

Proof. The theorem follows from the fact that the D-matrix of G is A + 2A and

from Lemma 5. ¤

Examples.

specD(Kn,n) =

(
3n− 2 n− 2 −2

1 1 2n− 2

)

specD(CP (n)) =

(
2n −2 0
1 n n− 1

)

where CP (n) denotes the (2n)-vertex regular graph of degree 2n − 2 (obtained by

deleting n independent edges from the complete graph K2n), sometimes referred to

as the “cocktail party graph”.
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The graph product G×K2

Theorem 2. Let G be an r-regular graph of diameter 1 or 2 with an adjacency

matrix A and spec(G) = {λ1, λ2, . . . , λp} . Then H = G ×K2 is (r + 1)-regular and

of diameter 2 or 3 with

specD(H) =

(
5p− 2(r + 2) −2 (λi + 2) −p 0

1 1 1 p− 1

)
, i = 2, . . . , p .

Proof. Since G is of diameter 1 or 2, its distance matrix is A+2A . Then the distance

matrix of H is of the form
[

A + 2A A + 2A + J

A + 2A + J A + 2A

]
.

The theorem then follows by Lemma 2. ¤

The wheel graph W1,p is defined as the join of p-vertex cycle Cp and K1 [4].

Figure 1: W1,5 = C5∇K1

Theorem 3. The distance energy of the wheel graph is given by ED(W1,p) =

2
(
p− 2 +

√
p2 − 3p + 4

)
.

Proof. Let A be an adjacency matrix of Cp with spec(Cp) = {2, λ2, λ3, . . . , λp} .

Then the distance matrix of the wheel graph can be written as
[

A + 2A Jp×1

J1×p 0

]
.

By Lemma 3,

specD (W1,p) =

(
p− 2±

√
p2 − 3p + 4 − (λi + 2)
1 1

)
, i = 2, . . . , p .
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Since λi + 2 > 0 for all i = 2, . . . , p , the theorem follows. ¤

BOUNDS FOR THE SPECTRAL RADIUS AND DISTANCE ENERGY

Theorem 4. Let G be a (p, q)-graph of diameter 2 and µ1 be its greatest D-

eigenvalue. Then µ1 ≥ (2 p2 − 2q − 2p)/p . Equality holds if and only if G is a

regular graph.

Proof. Let G be a connected graph of diameter 2, and let its vertices be labelled

as v1, v2, . . . , vp . Let di denote the degree of vi . Then, as G is of diameter 2, it is

easy to observe that the i-th row of D consists of di one’s and p − di − 1 two’s. Let

x = [1, 1, 1, . . . , 1] , the all one vector. Then by the Raleigh Principle

µ1 ≥ xD xT

xxT
=

1

p

p∑
i=1

(2p− di − 2) =
2 p2 − 2q − 2p

p
.

If G is r-regular, then each row sum of D is equal to 2p − r − 2 and hence µ1 =

2p− r − 2 and equality holds. Conversely, if equality holds then x is the eigenvector

corresponding to µ1 and this happens when all row sums of D are equal. Since the

i-th row sum is equal to 2p− di − 2 , this occurs only when di has the same value for

all i , i. e., only when G is regular. ¤

The following theorem gives upper and lower bounds for the energy of graphs of

diameter 2.

Theorem 5. Let G be a (p, q)-graph of diameter 2 and let ∆ be the absolute value

of the determinant of its distance matrix. Then
√

4p (p− 1)− 6q + p (p− 1) ∆2/p ≤ ED(G) ≤
√

2p (2 p2 − 3q − 2p) .

Proof. This proof is fully analogous to what McClelland [24] has done in the case of

the ordinary graph energy (see pp. 147-148 in the book [11]). In view of the definition

(1) of D-energy and bearing in mind Lemma 7,

E2
D =

(
p∑

i=1

|µi|
)2

=

p∑
i=1

µ2
i +

∑

i6=j

|µi| |µj|

= 4p (p− 1)− 6q +
∑

i 6=j

|µi| |µj| . (3)
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By using the the inequality between the arithmetic and geometric means we have

1

p(p− 1)

∑

i6=j

|µi| |µj| ≥
(∏

i 6=j

|µi| |µj|
)1/[p(p−1)]

=

(∏

i6=j

|µi|2(p−1)

)1/[p(p−1)]

=
∏

i6=j

|µi|2/p = ∆2/p . ¤ (4)

Combining Equations (3) and (4) we arrive at the lower bound of Theorem 5.

By expanding
p∑

i=1

p∑
j=1

[|µi| − |µj|]2 and by taking into account (1), we obtain

p

p∑
i=1

µ2
i − 2 ED(G)2 + p

p∑
j=1

µ2
j

This expression is necessarily non-negative. The upper bound for ED follows now

from Lemma 7. ¤

Theorem 6. Let G be an r-regular graph of diameter 2. Then

ED ≤ 2p− r − 2 +
√

(p− 1) [p (r + 4)− (r + 2)2] .

Proof. Let G be an r-regular graph with p vertices and q edges. Then by Theorem

4, the greatest D-eigenvalue is µ1 = 2p − r − 2 . By applying the Cauchy–Schwarz

inequality to the two p− 1 vectors (1, 1, . . . , 1) and (µ2, µ3, . . . , µp) we get

(
p∑

i=2

|µi|
)2

≤ (p− 1)

p∑
i=2

µ2
i

i. e.,

(ED − µ1)
2 ≤ (p− 1)

(
4 p2 − 6q − 4p− µ2

1

)

i. e.,

ED ≤ µ1 +
√

(p− 1) (4 p2 − 6q − 4p− µ2
1) .

Since µ1 = 2p− r − 2 and 2q = pr , we have

ED ≤ 2p− r − 2 +
√

(p− 1) [p(r + 4)− (r + 2)2] . ¤
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Theorem 7. For any graph G of diameter 2 ,

ED ≤ 1

p

[
2 p2 − 2q − 2p +

√
(p− 1) [(2p + q) (2 p2 − 4q)− 4 p2]

]
.

Proof. This proof follows the ideas of Koolen and Moulton [22,23], used for obtaining

an analogous upper bound for the ordinary graph Energy E . By the Cauchy–Schwarz

inequality we have

ED ≤ µ1 +
√

(p− 1) [4 p2 − 6q − 4p− µ2
1] .

Define a function

f(x) := x +
√

(p− 1)(4 p2 − 6q − 4p− x2)

for
2 p2 − 2q − 2p

p
≤ x ≤

√
4 p2 − 6q − 4p

Then (2 p2 − 2q − 2p)/p ≥ 1 and hence f(x) is a decreasing function for 2 p2 −
2q − 2p/p ≤ x2 . But (2 p2 − 2q − 2p)/p ≤ x ≤ x2 as x ≥ 1 . Hence f(x) ≤
f((2 p2 − 2q − 2p)/p) , proving the theorem. ¤

ON A PAIR OF D-EQUIENERGETIC GRAPHS

The problem of constructing non-cospectral graph having equal energies E, Eq.

(2), has been much discussed and numerous examples of this kind were put forward

[1,2,17–21,25–28]. Such pairs of graphs are referred to as “equienergetic” (the name

first time used in [2]). Motivated by this, in this section we discuss the construction

of D-equienergetic graphs. We succeed to do this for every p ≡ 1 (mod3) and p ≡
0 (mod 6) .

Evidently, two graphs G1 and G2 are said to be D-equienergetic if ED(G1) =

ED(G2) .

The graph G∇G is obtained by joining every vertex of G to every vertex of another

copy of G .
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Theorem 8. Let G be a connected r-regular graph on p vertices with spec(G) =

{r, λ2, . . . , λp} . Then

specD(G∇G) =

(
3p− r − 2 p− r − 2 −2 (λi + 2)

1 1 2

)
, i = 2, . . . , p .

Proof. The distance matrix of G∇G can be written as[
A + 2A J

J A + 2A

]
.

Then the theorem follows from Lemma 2. ¤

Theorem 9. For every p ≡ 0 (mod 6) ≥ 18 , there exists a pair of D-equienergetic

regular graphs.

Proof. Let p = 6t , t ≥ 3 . Let G1 and G2 be non-cospectral cubic graphs on 2t

vertices as specified in Lemma 6. Then their line graphs L(G1) and L(G2) are 4-

regular on 3t vertices. By Lemma 4, the only positive D-eigenvalues of L(G1)∇L(G1)

are 9t−6 and 3t−6 . The same is true for L(G2)∇L(G2) . Thus ED(L(G1)∇L(G1)) =

ED(L(G2)∇L(G2)) = 24(t − 1) . The theorem follows now from the fact that both

L(G1)∇L(G1) and L(G2)∇L(G2) have 6t vertices. ¤

Figure 2: D-equienergetic graphs on 18 vertices with ED = 48 .

Theorem 10. For every p ≡ 1 (mod 3) ≥ 10 , there exists a pair of D-equienergetic

graphs.
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Proof. Let p = 3t + 1 . Let G1 and G2 be non-cospectral cubic graphs on 2t vertices

as specified by Lemma 6. The line graphs L(G1) and L(G2) possess 3t vertices and

are regular of degree 4. Then by a similar argument as in Theorem 3, we have

specD(L(G)∇K1) =

(
3t− 3±√9 t2 − 15t + 9 − (λi + 2)

1 1

)
, i = 2, . . . , 3t

where λi , i = 2, 3, . . . , 3t , are the (ordinary) eigenvalues of L(G) , different from its

regularity. Since λi + 2 ≥ 0 for i = 2, . . . , 3t , and 3t− 3 ≤ √
9 t2 − 15t + 9 , we have

ED(L(G)∇K1) = 2
√

9 t2 − 15 t + 9 +
3t∑

i=2

(λi + 2)

= 2
√

9 t2 − 15 t + 9− λ1 + 2(3t− 1)

= 2
√

9 t2 − 15 t + 9− 4 + 2(3t− 1) .

Thus

ED(L(G1)∇K1) = ED(L(G2)∇K2) = 2(3t− 3) + 2
√

9 t2 − 15 t + 9

i. e., L(G1)∇K1 and L(G2)∇K1 are D-equienergetic. ¤

Figure 3: D-equienergetic graphs on 10 vertices with ED = 2(6 + 3
√

5) .

References

[1] R. Balakrishnan, The energy of a graph, Lin. Algebra Appl. 387 (2004) 287–295.
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1. Introduction

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vp} . The distance
matrix D = D(G) of G is defined so that its (i, j)-entry is equal to dG(vi, vj) , the
distance (= length of the shortest path [2]) between the vertices vi and vj of G .
The eigenvalues of the D(G) are said to be the D-eigenvalues of G and form the
D-spectrum of G , denoted by specD(G) .

The ordinary graph spectrum is formed by the eigenvalues of the adjacency
matrix [4]. In what follows we denote the ordinary eigenvalues of the graph G by
λi , i = 1, 2, . . . , p , and the respective spectrum by spec(G) .

Since the distance matrix is symmetric, all its eigenvalues µi , i = 1, 2, . . . , p ,
are real and can be labelled so that µ1 ≥ µ2 ≥ · · · ≥ µp . If µi1 > µi2 > · · · > µig

are the distinct D-eigenvalues, then the D-spectrum can be written as

specD(G) =
(

µi1 µi2 . . . µig

m1 m2 . . . mg

)

where mj indicates the algebraic multiplicity of the eigenvalue µij . Of course,
m1 + m2 + · · · + mg = p .
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indulalgopal@yahoo.com

†Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia, e-mail:
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Two graphs G and H for which specD(G) = specD(H) are said to be D-
cospectral. Otherwise, they are non-D-cospectral.

The D-energy, ED(G) , of G is defined as

ED(G) =
p∑

i=1

|µi| . (1)

Two graphs with equal D-energy are said to be D-equienergetic. D-cospectral
graphs are evidently D-equienergetic. Therefore, in what follows we focus our
attention to D-equienergetic non-D-cospectral graphs.

The concept of D-energy, Eq. (1), was recently introduced [11]. This definition
was motivated by the much older [7] and nowadays extensively studied [8, 9, 10,
13, 14, 15, 16] graph energy, defined in a manner fully analogous to Eq. (1), but in
terms of the ordinary graph eigenvalues (eigenvalues of the adjacency matrix, see
[4]).

In this paper we first derive a Hoffman–type relation for the distance matrix
of distance regular graphs. By means of it, the distance spectra of some graphs
and their energies are obtained. Also pairs of D-equienergetic bipartite graphs on
24 t , t ≥ 3 , vertices are constructed. All graphs considered in this paper are simple
and we follow [4] for spectral graph theoretic terminology.

The considerations in the subsequent sections are based on the applications of
the following lemmas:

Lemma 1 [see [4]]. Let G be a graph with adjacency matrix A and spec(G) =

{λ1, λ2, . . . , λp} . Then detA =
p∏

i=1

λi . In addition, for any polynomial P (x) ,

P (λ) is an eigenvalue of P (A) and hence detP (A) =
p∏

i=1

P (λi) .

Lemma 2 [see [5]]. Let

A =
[

A0 A1

A1 A0

]

be a 2× 2 block symmetric matrix. Then the eigenvalues of A are those of A0 + A1

together with those of A0 − A1 .
Lemma 3 [see [4]]. Let M , N , P , and Q be matrices, and let M be invertible.

Let

S =
[

M N
P Q

]
.

Then detS = detM det(Q − PM−1N) . Besides, if M and P commute, then
detS = det(MQ − PN) .

Lemma 4 [see [4]]. Let G be a connected r-regular graph, r ≥ 3 , with ordinary
spectrum spec(G){r, λ2, . . . , λp} . Then

spec(L(G)) =
(

2r − 2 λ2 + r − 2 · · · λp + r − 2 −2
1 1 · · · 1 p(r − 2)/2

)
.
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Lemma 5 [see [4]]. For every t ≥ 3 , there exists a pair of non-cospectral cubic
graphs on 2t vertices.

Lemma 6 [see [6]]. The distance spectrum of the cycle Cn is given by

n greatest eigenvalue j even j odd

even
n2

4
0 −cosec2

(
πj

n

)

odd
n2 − 1

4
−1

4
sec2

(
πj

2n

)
−1

4
cosec2

(
πj

2n

)

Definition 1 [see [12]]. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vp} .
Take another copy of G with the vertices labelled by {u1, u2, . . . , up} where ui cor-
responds to vi for each i . Make ui adjacent to all the vertices in N(vi) in G , for
each i . The resulting graph, denoted by D2G , is called the double graph of G .

Definition 2 [see [4]]. Let G be a graph. Attach a pendant vertex to each
vertex of G . The resulting graph, denoted by G ◦K1 , is called the corona of G with
K1 .

We first prove the following auxiliary theorem.
Theorem 1. Let M be a real symmetric irreducible square matrix of order p in

which each row sum is equal to a constant k .Then there exists a polynomial Q(x)
such that Q(M) = J , where J is the all one square matrix whose order is same as
that of M .

Proof. Since M is a real symmetric irreducible matrix in which each row sums
to k , by the Frobenius theorem [4], k is a simple and greatest eigenvalue of M . The
matrix M is diagonalizable because it is real and symmetric. Therefore there exists
an orthonormal basis of characteristic vectors of M , associated with the eigenvalues
of M .

Let λ1 = k, λ2, . . . , λg be the distinct eigenvalues of M . Let �(λi) be the
eigenspace spanned by the orthonormal set of characteristic vectors {xi

1, x
i
2, . . . , xi

pi
}

associated with λi , i = 1, 2, . . . , g . Then M has a spectral decomposition

M = λ1 T1 + λ2 T2 + · · · + λg Tg

where Ti is the projection of M onto �(λi) , treating M as a linear operator. Then
T 2

i = Ti , Ti Tj = 0 , i �= j and

Ti = xi
1

(
xi

1

)T
+ xi

2

(
xi

2

)T
+ · · · + xi

pi

(
xi

pi

)T
.

Now, corresponding to the greatest eigenvalue k of M , there exists a unique
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(one-dimensional) orthonormal basis

x1 =

⎡
⎢⎢⎢⎣

1/
√

p
1/

√
p

...
1/

√
p

⎤
⎥⎥⎥⎦

for �(λ1) = �(k) , such that M = k T1 + λ2 T2 + · · · + λg Tg where

T1 =

⎡
⎢⎢⎢⎣

1/
√

p
1/

√
p

...
1/

√
p

⎤
⎥⎥⎥⎦ [

1/
√

p, 1/
√

p, · · · , 1/
√

p
]

=

⎡
⎢⎢⎢⎢⎣

1/p 1/p · · · 1/p
1/p 1/p · · · 1/p
· · · · · · · · · · · ·
· · · · · · · · · · · ·
1/p 1/p · · · 1/p

⎤
⎥⎥⎥⎥⎦ =

1
p

J .

Because the Ti’s are projections, we have f(M) = f(k)T1 + f(λ2)T2 + · · · +
f(λg)Tg for any polynomial f(x) . As M is diagonalizable, the minimal polynomial
of M is (x − k)(x − λ2) · · · (x − λg) .

Let S(x) = (x − λ2) · · · (x − λg). Then S(λi) = 0 , λi �= k . Thus S(M) =
S(k)T1S(k) (1/p)J . Choose Q(x) = p S(x)/S(k) . This Q(x) satisfies the require-
ment of the theorem. �

Theorem 2. Let D be the distance matrix of a connected distance regular graph
G . Then D is irreducible and there exists a polynomial P (x) such that P (D) = J .
In this case

P (x) = p × (x − λ2)(x − λ3) · · · (x − λg)
(k − λ2)(k − λ3) . . . (k − λg)

where k is the unique sum of each row which is also the greatest simple eigenvalue
of D , whereas λ2, λ3, . . . , λg are the other distinct eigenvalues of D .

Proof. The theorem follows from Theorem 1 due to the observation that the
distance matrix of a connected distance regular graph is irreducible, symmetric and
each row sums to a constant. �

The rest of this paper is organized as follows. In the next section we obtain
the distance spectra of D2(G) , G × K2 , G[K2] , the lexicographic product of G
with K2 , and G ◦ K1 . Using this, the distance energies of D2(C2n) , Cn × K2 ,
C2n[K2] , and Cn ◦ K1 are calculated. In the third section the D-spectrum of the
extended double cover graphs of regular graphs of diameter 2 is discussed and a
pair of D-equienergetic bipartite graphs on 24t , t ≥ 3 vertices is constructed.

For operations on graphs that are not defined in this paper see [4].

2. Distance spectra of some graphs

In this section we obtain the distance spectra of the double graph of Cn , the Carte-
sian product of Cn with K2 and the corona of Cn with K1 .
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2.1. The double graph of G

Theorem 3. Let G be a graph with distance spectrum specD(G) = {µ1, µ2, . . . , µp} .
Then

specD(D2G) =
(

2 (µi + 1) −2
1 p

)
, i = 1, 2, . . . , p .

Proof. By definition of D2(G) we have:

dD2G(vi, vj) = dG(vi, vj)

dD2G(vi, ui) = 2

dD2G(vi, uj) = dG(vi, vj)

dD2G(vj , ui) = dG(vj , vi) .

Hence a suitable ordering of vertices yields the distance matrix of D2G of the form

[
D D + 2I

D + 2I D

]

and the theorem follows from Lemma 2. �

Theorem 4. ED(D2C2n) = 4n(n + 1) .
Proof. By Lemma 6 and Theorem 3 we have

specD(D2C2n) =
(

2
(
n2 + 1

)
2 −2 cot2(πj/2n) −2

1 n − 1 1 2n

)
, j = 1, 3, 5, . . . , 2n−1 .

Thus ED(D2C2n) = 2 × [2(n2 + 1) + 2(n − 1)]4n(n + 1) . �

2.2. The Cartesian product G × K2

Theorem 5. Let G be a distance regular graph with distance regularity k , distance
matrix D , and D-spectrum {µ1 = k, µ2, . . . , µp} . Then

specD(G × K2) =
(

2k + p −p 2 µi 0
1 1 1 p − 1

)
, i = 2, 3, . . . , p .

Proof. The theorem follows from the fact that the distance matrix of G× K2

has the form [
D D + J

D + J D

]

and from Theorem 1 and Lemma 2. �

Corollary 1. ED(G × K2) = 2(ED(G) + p) .
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2.3. The corona of G and K1

Theorem 6. Let G be a connected distance regular graph with distance regularity
k , distance matrix D , and specD(G) = {µ1 = k, µ2, . . . , µp} . Then specD(G ◦K1)
consists of the numbers

p + k − 1 +
√

(p + k)2 + (p − 1)2 , p + k − 1 −
√

(p + k)2 + (p − 1)2

µi − 1 +
√

µ2
i + 1 , µi − 1 −

√
µ2

i + 1 , i = 2, 3, . . . , p .

Proof. From the definition of G ◦K1 , it follows that the distance matrix H of
G ◦ K1 is of the form [

D D + J
D + J D + 2(J − I)

]
.

Now the characteristic equation of H is

|λI − H | = 0 ⇒
∣∣∣∣∣

λI − D − (D + J)

− (D + J) λI − D − 2 (J − I)

∣∣∣∣∣ = 0

⇒
∣∣∣(λI − D) (λI − D − 2 (J − I)) − (D + J)2

∣∣∣ = 0 by Lemma 3

Now D being the distance matrix of a distance regular graph, it satisfies the re-
quirement in Theorem 2. Then the D− spectrum of G ◦ K1 follows from Theorem
2 and Lemma 1. �

Corollary 2.

ED(C2n ◦ K1) = 2
[
(n − 1)2 +

√
(n − 1)4 + 6 n2

]
ED(C2n+1 ◦ K1) = 2

[
n2 + 3n +

√
(n2 + 3n)2 + 6 n2 + 6n + 1

]
.

2.4. The lexicographic product of G with K2

Theorem 7. Let G be a connected graph with distance spectrum specD(G){µ1 =
k, µ2, . . . , µp} . Then

specD(G[K2]) =
(

2µi + 1 −1
1 p

)
, i = 1, 2, . . . , p .

Proof. From the definition of the lexicographic product of G with K2 , its
distance matrix can be written as[

D D + I
D + I D

]

and the theorem follows from Lemma 2. �
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Corollary 3. ED(C2n[K2]) = 2n(2n + 1) .
Proof. From Lemma 6 and Theorem 7 we have

specD(C2n[K2]) =
(

2 n2 + 1 1 −1 1 − 2 cosec2(πj/2n)
1 n − 1 2n 1

)
, j = 1, 3, 5, . . . .

Since 1− 2 cosec2θ = −(cot2θ + coesc2θ) , the only positive eigenvalues are 2 n2 + 1
and 1 with multiplicities 1 and n−1 , respectively. Thus ED(C2n[K2]) = 2n(2n+1).

�

3. The extended double cover graph of regular graphs of di-
ameter 2

In [1] N. Alon introduced the concept of extended double cover graph of a graph as
follows.

Let G be a graph on the vertex set {v1, v2, . . . , vp} . Define a bipartite graph H
with V (H) = {v1, v2, . . . , vp, u1, u2, . . . , up} in which vi is adjacent to ui for each
i = 1, 2, . . . , p and vi is adjacent to uj if vi is adjacent to vj in G . The graph H
is known as the extended double cover graph (EDC-graph) of G . The ordinary
spectrum of H has been determined in [3].

In this section we obtain the distance spectrum of the EDC−graph of a regular
graph of diameter 2 and use it to construct regular D-equienergetic bipartite graphs
on 24 t vertices, for t ≥ 3 .

Theorem 8. Let G be an r-regular graph of diameter 2 on p vertices with
(ordinary) spectrum {r, λ2, . . . , λp} . Then the D-spectrum of the EDC-graph of
G consists of the numbers 5p − 2r − 4 , 2r − p , −2 (λi + 2) , i = 2, 3, . . . , p , and
2 λi , i = 2, 3, . . . , p .

Proof. Let A and A be, respectively, the adjacency matrices of G and G .
Then by the definition of the EDC-graph, its distance matrix can be written as

[
2 (J − I) A + 3A + I

A + 3A + I 2 (J − I)

]

and the theorem follows from Lemmas 1 and 3 and also from the observation that
A = J − I − A. �

Corollary 4.

ED (EDC (Cp∇Cp)) =

{
40 , p = 3
4 [E (Cp) + 5p − 10] , p � 4

where Cp∇Cp is the join [4] of Cp with itself.
Proof. The join of Cp with itself is a regular graph diameter 2 with the ordinary

spectrum (
p + 2 2 − p λi

1 1 2

)
, i = 2, 3, . . . , p
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where {2, λ2, . . . , λp} is the ordinary spectrum of Cp . Then by the above theorem,
the distance spectrum of EDC(Cp∇Cp) is

(
8p− 8 4 −2 (λi + 2) 2p − 8 4 − 2p 2 λi

1 1 2 1 1 2

)
, i = 2, 3, . . . , p

and hence the corollary follows as E(C3) = 4. �

3.1. On a pair of D-equienergetic bipartite graphs

Theorem 9. There exists a pair of regular non-D-cospectral D-equienergetic bi-
partite graphs on 24 t vertices, for each t ≥ 3 .

Proof. Let G be a cubic graph on 2t vertices, t ≥ 3 . Consider L2(G) , its
second iterated line graph. Then by Lemma 4 and Theorem 8, we calculate that
for F = L2(G)∇L2(G) , the D-spectrum of EDC(F ) is(

16 (3t− 1) 12 0 2 (λi + 3) 12 t − 16 −4 −12 (t− 1) −2 (λi + 5)
1 1 8t 2 1 8t 1 2

)
,

i = 2, 3, . . . , 2t. Thus

ED(EDC(F )) = 2 ×
[
12(t − 1) + 32 t + 4

2t∑
i=2

(λi + 5)

]

= 2 × [12 t − 12 + 32 t + 4(−3 + 5(2t − 1))]

= 8 (21 t− 11) .

Now let G1 and G2 be the two non-cospectral cubic graphs on 2t vertices as given
by Lemma 5. Further, let H1 and H2 be the EDC-graphs of L2(G1)∇L2(G1)
and L2(G2)∇L2(G2) , respectively. Then H1 and H2 are bipartite and ED(H1) =
ED(H2) = 8 (21 t− 11) , proving the theorem. �
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Abstract

The D-eigenvalues {µ1, µ2, . . . , µp} of a graph G are the eigenvalues of its distance
matrix D and form the distance spectrum or D-spectrum of G denoted by specD(G). In
this paper we obtain theD-spectrum of the cartesian product of two distance regular graphs.
TheD-spectrum of the lexicographic productG[H] of two graphsG andH whenH is reg-
ular is also obtained. The D-eigenvalues of the Hamming graphs Ham(d, n) of diameter
d and order nd and those of the C4 nanotori, Tk,m,C4 are determined.

Keywords: Distance spectrum, Cartesian product, lexicographic product, Hamming graphs, C4 nan-
otori.

Math. Subj. Class.: 05C12, 05C50

1 Introduction
Adjacency matrix of a graph and its spectrum have arisen as a natural tool with which one
can study graphs and its structural properties. Also the adjacency spectrum find applica-
tions in quantum theory and chemistry [3]. The idea of distance matrix seems a natural
generalization, with perhaps more specificity than that of an adjacency matrix. Distance
matrix and their spectra have arisen independently from a data communication problem
[7] studied by Graham and Pollack in 1971 in which the most important feature is the
number of negative eigenvalues of the distance matrix. While the problem of computing
the characteristic polynomial of adjacency matrix and its spectrum appears to be solved
for many large graphs, the related distance polynomials have received much less attention.
The distance matrix is more complex than the ordinary adjacency matrix of a graph since
the distance matrix is a complete matrix (dense) while the adjacency matrix often is very
sparse. Thus the computation of the characteristic polynomial of the distance matrix is
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computationally a much more intense problem and, in general, there are no simple analyti-
cal solutions except for a few trees [6]. For this reason, distance polynomials of only trees
have been studied extensively in the mathematical literature [6, 16].

The distance matrix of a graph has numerous applications to chemistry and other bran-
ches of science. The distance matrix, contains information on various walks and self-
avoiding walks of chemical graphs, is immensely useful in the computation of topological
indices such as the Wiener index, is useful in the computation of thermodynamic properties
such as pressure and temperature coefficients and it contains more structural information
compared to a simple adjacency matrix. In addition to such applications in chemical sci-
ences, distance matrices find applications in music theory, ornithology, molecular biology,
psychology, archeology etc. For a survey see [1] and also the papers cited therein.

Let G be a connected graph with vertex set V (G) = {u1, u2, . . . , . . . , up}. The distance
matrixD = D(G) ofG is defined so that its (i, j)-entry is equal to dG(ui, uj), the distance
(= length of the shortest path [2]) between the vertices ui and uj of G. The eigenvalues
of D(G) are said to be the D-eigenvalues of G and form the distance spectrum or the
D-spectrum of G , denoted by specD(G).

The characteristic polynomial of theD-matrix and the corresponding spectra have been
considered in [4, 6, 7, 8]. For some recent works on D-spectrum see [9, 10, 11, 12, 13, 18].

For two graphs, the ordinary spectrum of graph compositions is well explored and
generalized results of NEPS of graphs are presented in [3]. Such studies for the distance
spectrum did not appear in literature yet and hence in this paper we present the following.

Let G and H be two graphs. Let G + H and G[H] denote the cartesian product and
lexicographic product of G and H respectively [3].

In this paper we first derive the D-spectrum of G + H and G[H]. By means of this,
the distance spectrum of the Hamming graph and C4 nanotori are obtained. A work of this
type is reported here for the first time.

All graphs considered in this paper are simple and we follow [3] for spectral graph
theoretic terminology and [2] for distance in graphs. The considerations in the subsequent
sections are based on the applications of the following lemmas.

Lemma 1.1 ([3]). Let G be an r-regular graph on p vertices with adjacency eigenvalues
r, λ2, . . . , λp. Then G and its complement G have the same eigenvectors, and the eigenval-
ues of G are p− r − 1,−1− λ2, . . . ,−1− λp.

Lemma 1.2 ([5]). The distance spectrum of the cycle Cn is given by

n greatest eigenvalue j even j odd

even
n2

4
0 − cosec2

(
πj

n

)

odd
n2 − 1

4
−1

4
sec2

(
πj

2n

)
−1

4
cosec2

(
πj

2n

)
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Definition 1.3 ([14]). The Hamming graph Ham(d, n), d ≥ 2, n ≥ 2, of diameter d
and characteristic n have vertex set consisting of all d-tuples of elements taken from an n-
element set, with two vertices adjacent if and only if they differ in exactly one coordinate.
Ham(d, n) is equal to Kn +Kn + · · ·+Kn︸ ︷︷ ︸

d

, the cartesian product of Kn, the complete

graph on n vertices, d times. Ham(3, n) is referred to as a cubic lattice graph.

Lemma 1.4 ([17]). Let G and H be two connected graphs, and let u = (u1, u2), v =
(v1, v2) ∈ V (G)× V (H). Let G+H denote their cartesian product. Then

dG+H(u, v) = dG(u1, v1) + dH(u2, v2).

2 The D-spectrum of G + H

In this section we derive the D-spectrum of the cartesian product of two distance regular
graphs.

Theorem 2.1. Let G and H be two distance regular graphs on p and n vertices with dis-
tance regularity k and t respectively. Let specD(G) = {k, µ2, µ3, . . . , µp} and specD(H)
= {t, η2, η3, . . . , ηn}. Then

specD(G+H) = {nk + pt, nµi, pηj , 0}

i = 2, . . . , p , j = 2, . . . , n and 0 is with multiplicity (p− 1)(n− 1).

Proof. Let DG and DH be the distance matrices of G and H respectively. Let V (G) =
{u1, u2, . . . , up} and V (H) = {v1, v2, . . . , vn}. Then DG = [dij ] and DH = [eij ] where
dij = dG(ui, uj) and eij = dH(vi, vj). Since G and H are distance regular graphs with
distance regularities k and t respectively, we have

p∑
j=1

drj = k and
n∑

j=1

eqj = t (2.1)

Also since G is distance regular, the all one column vector of order p × 1 is the eigen-
vector corresponding to the greatest eigenvalue k of DG. As DG is real and symmetric,
it is diagonalizable and hence admits an orthogonal basis BG consisting of eigenvectors
corresponding to its eigenvalues. Thus if µi is an eigenvalue of DG which is different from

k with an eigenvector Xi =
[
x1

i , x
2
i , . . . , x

p
i

]T ∈ BG, then
p∑

j=1

xj
i = 0.

Let u = (u1, u2), v = (v1, v2) ∈ V (G)× V (H). Then by Lemma 1.4

dG+H(u, v) = dG(u1, v1) + dH(u2, v2).

By a suitable ordering of vertices in G+H and by virtue of Lemma 1.4, its D-matrix,
C can be written in the form
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C =



d11 + e11 · · · d11 + e1n · · · · · · d1p + e11 · · · d1p + e1n

...
...

...
...

...
...

...
...

d11 + en1 · · · d11 + enn · · · · · · d1p + en1 · · · d1p + enn

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

dp1 + e11 · · · dp1 + e1n · · · · · · dpp + e11 · · · dpp + e1n

...
...

...
...

...
...

...
...

dp1 + e1n

... dp1 + enn · · · · · · dpp + en1 · · · dpp + enn



=



d (u1, u1) · Jn +DH d (u1, u2) · Jn +DH · · · · · · d (u1, up) · Jn +DH

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
d (up, u1) · Jn +DH d (up, u2) · Jn +DH · · · · · · d (up, up) · Jn +DH


= DG ⊗ Jn + Jp ⊗DH

where ⊗ denotes the tensor product of matrices.
Now we find the eigenvalues of C by considering eigenvectors associated with them. The
following relation for matrices is well known [15]. For the matrices A,B,C and D

(A⊗B) · (C ⊗D) = (AC)⊗ (BD)

whenever the products AC and BD exist.
Let 1G denote the all one eigenvector corresponding to the eigenvalue k of G and 1H

the all one eigenvector corresponding to the eigenvalue t of H . Then

DG · 1G = k1G and DH · 1H = t1H

Therefore

C · (1G ⊗ 1H) = (DG ⊗ Jn + Jp ⊗DH) · (1G ⊗ 1H)
= (DG · 1G)⊗ (Jn1H) + (Jp1G)⊗ (DH · 1H)
= k1G ⊗ n1H + p1G ⊗ t1H

= nk · (1G ⊗ 1H) + pt · (1G ⊗ 1H)
= (nk + pt) · (1G ⊗ 1H)

showing that 1G ⊗ 1H is the eigenvector corresponding to the eigenvalue nk + pt of C.
Let Xi be the eigenvector corresponding to the eigenvalue µi of DG. Then Xi ⊗ 1H is

the eigenvector corresponding to the eigenvalue nµi of C. For

C · (Xi ⊗ 1H) = (DG ⊗ Jn + Jp ⊗DH) · (Xi ⊗ 1H)
= (DG ·Xi)⊗ (Jn1H) + (JpXi)⊗ (DH · 1H)
= µiXi ⊗ n1H + 0⊗ t1H

= nµi (Xi ⊗ 1H)
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Similarly if Zj is an eigenvector corresponding to the eigenvalue ηj of DH , then 1G ⊗
Zj is an eigenvector corresponding to the eigenvalue pηj of C.

In addition to these eigenvalues we can see that 0 appears to be an eigenvalue with
multiplicity (p− 1)(n− 1). For let Ri

p, i = 2, 3, . . . , p be the (p− 1) linearly independent
eigenvectors corresponding to the eigenvalue 0 of Jp and T j

n, j = 2, 3, . . . , n − 1 be the
(n − 1) linearly independent eigenvectors corresponding to the eigenvalue 0 of Jn. Then
the (p − 1)(n − 1) vectors Ri

p ⊗ T j
n are linearly independent and are the eigenvectors

corresponding to 0 of C. For

C ·
(
Ri

p ⊗ T j
n

)
= (DG ⊗ Jn + Jp ⊗DH) ·

(
Ri

p ⊗ T j
n

)
=
(
DG ·Ri

p

)
⊗
(
Jn · T j

n

)
+
(
JpR

i
p

)
⊗
(
DH · T j

n

)
=
(
DG ·Ri

p

)
⊗ 0 + 0⊗

(
DH · T j

n

)
= 0

Now the pn vectors Xi ⊗ 1H , 1G ⊗Zj and Ri
p ⊗ T j

n are linearly independent and as C
has a basis consisting of linearly independent eigenvectors, the theorem follows.

2.1 The D-spectrum of Ham(d, n)

In [14], the ordinary spectrum of the cubic lattice graph is obtained. In this section we use
Theorem 2.1 to obtain the D-spectrum of Ham(d, n).

Theorem 2.2. Let Ham(d, n) be the Hamming graph of characteristic n. Then the D-
eigenvalues of Ham(d, n) are dnd−1 (n− 1), 0 and −nd−1 with multiplicities 1, nd −
d(n− 1)− 1 and d (n− 1) respectively.

Proof. The graph Kn is distance regular with distance regularity n − 1. Now the proof
follows by repeated application of Theorem 2.1 and from the ordinary spectrum of Kn

[3].

2.2 The D-spectrum of the C4 nanotori, Tk,m,C4

The graph Ck + Cm where both k and m are odd is defined as the C4 nanotori, Tk,m,C4 .

Theorem 2.3. The distance spectrum of the C4 nanotori, Tk,m,C4 consists of the following
numbers

(m+ k) (mk − 1)
4

, −m
4

sec2

(
πj

2k

)
, −m

4
cosec2

(πr
2k

)
,

−k
4

sec2

(
πt

2m

)
, −k

4
cosec2

(
πl

2m

)
where j ∈ {1, 2, . . . , k−1} and even, r ∈ {1, 2, . . . , k−1} and odd t ∈ {1, 2, . . . ,m−1}
and even and l ∈ {1, 2, . . . ,m−1} and odd together with 0 of multiplicity (m−1)(k−1).

Proof. The cycle C2n+1 is distance regular with distance regularity n(n + 1). Now the
proof follows from Theorem 2.1 and Lemma 1.2.
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3 The D-spectrum of G[H]

In this section we obtain the distance spectrum of the lexicographic product G[H] of two
graphs G and H . The following definition of the lexicographic product of G and H is from
[3].

Definition 3.1. Let G and H be two graphs on vertex sets V (G) = {u1, u2, . . . , . . . , up}
and V (H) = {v1, v2, . . . , . . . , vn} respectively. Then their lexicographic product G[H] is
a graph defined by V (G[H]) = V (G)× V (H), the cartesian product of V (G) and V (H)
in which u = (u1, v1) be adjacent to v = (u2, v2) if and only if either

1. u1 be adjacent to v1 in G or

2. u1 = v1 and u2 be adjacent to v2 in G.

Distance in G[H]

We prove the following lemma on distance in lexicographic product of graphs.

Lemma 3.2. Let G and H be two connected graphs with atleast two vertices and let u =
(u1, v1), v = (u2, v2) ∈ V (G)× V (H). Then

dG[H](u, v) =


dG(u1, u2) if u1 6= u2

1 if u1 = u2 and v1 adjacent to v2
2 if u1 = u2 and v1 not adjacent to v2

Proof. We show that in the corresponding composition there exist a path between u and v
of length as given in the lemma. Let dG(u1, u2) = t and u1 = s0, s1, . . . , st = u2 be the
shortest u1 − u2 path in G.
Let u = (u1, v1), v = (u2, v2) ∈ V (G) × V (H) and u1 6= u2. Since the successive
ordered pairs in any u− v path can change both the coordinates and also as u2 is reachable
from u1 by not less that t steps, any u− v path in G[H] is of length atleast t.

Now the following u− v path in G[H] is of length t.
P : u = (s0, v1), (s1, v2), (s2, v2), . . . , (st, v2) = v. Thus dG[H](u, v) = dG(u1, u2)

if u1 6= u2.
Now suppose u1 = u2 and v1 be adjacent to v2. Then by the definition of G[H], we

have dG[H](u, v) = 1.
Now suppose u1 = u2 and v1 is not adjacent to v2. Let s1 be adjacent to u1 in G. Then

u is not adjacent to v and u = (u1, v1), (s1, v2), (u1, v2) = v is a u − v path of length 2.
Thus dG[H](u, v) = 2. Hence the Lemma.

Theorem 3.3. Let G be a graph with D-matrix DG and H , an r-regular graph with an
adjacency matrix A. Let specD(G) = {µ1, µ2, . . . , µp} and the ordinary spectrum of H
be {r, λ2, λ3, . . . , λn}. Then

specDG[H] =
(
nµi + 2n− r − 2 − (λj + 2)

1 p

)
, i = 1 to p and j = 2 to n− 1
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Proof. Using Lemma 3.2 and by a suitable ordering of vertices of G[H], its D-matrix F ,
can be written in the form

F =



d12 · · · d12 d13 · · · d13 · · · · · · d1p

A+ 2A
...

...
...

...
...

...
...

...
...

d12 d12 d12 d13 · · · d13 · · · · · · d1p

d21 · · · d21 · · · · · · · · · d2p · · · d2p

...
...

... A+ 2A
...

...
...

d21 · · · d21 d2p · · · d2p

...
...

...
...

...
. . .

...
...

...
...

...
...

dp1 · · · dp1 · · · · · · · · ·
. . . · · · · · ·

...
...

...
...

...
...

...
...

...
... A+ 2A

dp1 · · · dp1 · · · · · · · · · · · · · · · · · · · · ·


= DG ⊗ Jn + Ip ⊗ (A+ 2A )

where A denote the adjacency matrix of G.
Since H is r-regular, the all one column vector 1 of order n× 1 is an eigenvector of A

with an eigenvalue r. Then by Lemma 1.1, the all one vector 1 is an eigenvector of A+2A
with an eigenvalue 2n−r−2. Similarly if λj is any other eigenvalue ofA with eigenvector
Yj , then Yj is an eigenvector ofA+2Awith eigenvalue−(λj +2) and that Yj is orthogonal
to 1.
Let Xi =

[
xi

1 xi
2 . . . xi

p

]T
be an eigenvector corresponding to the eigenvalue µi

of DG. Therefore
DG ·Xi = µiXi

Now

F · (Xi ⊗ 1n) =
(
DG ⊗ Jn + Ip ⊗

(
A+ 2A

))
(Xi ⊗ 1n)

= (DG ·Xi)⊗ (Jn · 1n) + (Ip ·Xi)⊗
(
A+ 2A

)
· 1n

= µiXi ⊗ n1n +Xi ⊗ (2n− r − 2) 1n

= nµi (Xi ⊗ 1n) + (2n− r − 2) (Xi ⊗ 1n)
= (nµi + 2n− r − 2) (Xi ⊗ 1n)

Therefore nµi + 2n− r − 2 is an eigenvalue of F with eigenvector Xi ⊗ 1n.
As Yj is orthogonal to 1, we have Jn · Yj = 0 for each j = 2, 3, . . . , n.

Let {Zk} , k = 1, 2, . . . , p be the family of p linearly independent eigenvectors associ-
ated with the eigenvalue 1 of Ip. Then for each j = 2, 3, . . . , n, the p vectors Zk ⊗ Yj are
eigenvectors of F with eigenvalue −(λj + 2). For

F · (Zk ⊗ Yj) =
(
DG ⊗ Jn + Ip ⊗

(
A+ 2A

))
(Zk ⊗ Yj)

= (DG · Zk)⊗ (Jn · Yj) + (Ip · Zk)⊗
(
A+ 2A

)
· Yj

= 0 + Zk ⊗− (λj + 2)Yj

= − (λj + 2) · (Zk ⊗ Yj)
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Also the pn vectors Xi ⊗ 1n and Zk ⊗ Yj are linearly independent. As the eigenvectors
belonging to different eigenvalues are linearly independent and as F has a basis consisting
entirely of eigenvectors, the theorem follows.
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a b s t r a c t

The distance energy of a graph G is a recently developed energy-type invariant, defined as
the absolute deviation of the eigenvalues of the distancematrix ofG. It is a usefulmolecular
descriptor inQSPRmodelling, as demonstrated byConsonni and Todeschini in [V. Consonni,
R. Todeschini, New spectral indices for molecule description, MATCH Commun. Math.
Comput. Chem. 60 (2008) 3–14]. We describe here the distance spectrum and energy of
the join-based compositions of regular graphs in terms of their adjacency spectrum. These
results are used to show that there exist a number of families of sets of noncospectral graphs
with equal distance energy, such that for any n ∈ N, each family contains a set with at least
n graphs. The simplest such family consists of sets of complete bipartite graphs.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let G be a simple graph on n vertices and let λ1, . . . , λn be the eigenvalues of its adjacency matrix A. The energy of a
graph

E = E(G) =
n∑
i=1

|λi|,

was defined by Gutman in [1] and it has long known chemical applications; for details see the surveys [2–4]. Following
the recent definition of the Laplacian energy in [5], it was observed that other energy-type invariants can be defined as the
absolute deviation of eigenvalues from their average value for a suitable graphmatrix. For example, letD be the distancematrix
of G, indexed by the vertices of G, where Duv represents the length of the shortest path between u and v in G. Then:

Definition 1 ([6,7]). The distance energy DE(G) of a graph G is the sum of absolute values of the eigenvalues of the distance
matrix of G.

Several invariants of this type (as well as a few others) were studied by Consonni and Todeschini [6] for possible use in
QSPR modelling. Their study showed, among other things, that the distance energy is a useful molecular descriptor, since
the values DE(G) or DE(G)/n appear among the best univariate models for the motor octane number of the octane isomers
and for the water solubility of polychlorobiphenyls.

I This work was supported by the grant 144015G of the Serbian Ministry of Science and the research programme P1-0285 of the Slovenian Agency for
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∗ Corresponding author at: Mathematical Institute, Serbian Academy of Science and Arts, Knez Mihajlova 36, 11000 Belgrade, Serbia.
E-mail addresses: dragance106@yahoo.com (D. Stevanović), indulalgopal@yahoo.com (G. Indulal).

0893-9659/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2008.11.007



Author's personal copy

D. Stevanović, G. Indulal / Applied Mathematics Letters 22 (2009) 1136–1140 1137

Our motivation for this research came from an initial computer search for the pairs of graphs having equal distance
energy. Since the distance energy is calculated from the distance spectrum, graphswith the same distance spectrum trivially
have the same distance energy. To avoid trivial cases, we say that the graphs G and H of the same order are DE-equienergetic
if DE(G) = DE(H), while they have distinct spectra of distance matrices. Some examples of DE-equienergetic graphs are
found in the literature [7–9].
The join G∇H of two vertex-disjoint graphs G and H is the graph obtained from the union G ∪ H by adding all edges

between a vertex of G and a vertex of H . Our main result (Section 2) is the description of the distance spectrum and the
distance energy of the join of regular graphs in terms of their adjacency spectrum. This description is then used to show that
there exist a number of families of sets of DE-equienergetic graphs, such that for any n ∈ N, each family contains a set with
at least n graphs. The simplest such family consists of sets of complete bipartite graphs. In Section 3 we further derive the
distance spectrum of the join of a regular graph with the union of two regular graphs of distinct vertex degrees, and provide
further families of sets of DE-equienergetic graphs.

2. Join of regular graphs

Theorem 2. For i = 1, 2, let Gi be an ri-regular graph with ni vertices and eigenvalues of the adjacency matrix AGi , λi,1 = ri ≥
λi,2 ≥ λi,2 ≥ · · · ≥ λi,ni . The distance spectrum of G1∇G2 consists of eigenvalues −λi,j − 2 for i = 1, 2 and j = 2, 3, . . . , ni
and two more eigenvalues of the form

n1 + n2 − 2−
r1 + r2
2
±

√(
n1 − n2 −

r1 − r2
2

)2
+ n1n2. (1)

Proof. The distance matrix D of the join G1∇G2 has the form

D =
[
2(J − I)− AG1 Jn1×n2
Jn2×n1 2(J − I)− AG2

]
.

As a regular graph, G1 has the all-one vector j as an eigenvector corresponding to eigenvalue r1, while all other eigenvectors
are orthogonal to j. (Note that G1 need not be connected, and thus, r1 need not be a simple eigenvalue of G1.)
Let λ be an arbitrary eigenvalue of the adjacency matrix of G1 with corresponding eigenvector x, such that jTx = 0. Then(
x 0n2×1

)> is the eigenvector ofD corresponding to eigenvalue−λ−2. A similar argument holds for an arbitrary eigenvalueµ
of AG2 , with the corresponding eigenvector y such that j

Ty = 0. In this way, forming the eigenvectors of the forms (x 0)>

and (0 y)>, we can construct a total of n1 + n2 − 2 mutually orthogonal eigenvectors of D. All of these eigenvectors are
orthogonal to the vectors (j 0)> and (0 j)>, whichmeans that they are spanned by the remaining two eigenvectors of D. This
implies that the two remaining eigenvectors of D have the form (αj βj)> for a suitable choice of α and β .
Suppose now that ν is an eigenvalue of D with an eigenvector of the form (αj βj)>. Then, from D (αj βj)> = ν (αj βj)>,

using AG1 j = r1j and AG2 j = r2j, we get the system

(2n1 − r1 − 2)α + n2β = να,
n1α + (2n2 − r2 − 2)β = νβ.

Eliminating α and β we get the quadratic equation in ν

ν2 − ν ((2n1 − r1 − 2)+ (2n2 − r2 − 2))+ (2n1 − r1 − 2)(2n2 − r2 − 2)− n1n2 = 0,

whose solutions are given by (1). One easily checks that these two solutions are indeed the remaining two eigenvalues
of D. �

Note that the complete bipartite graph Km,n is isomorphic to a join K̄m∇K̄n of the empty graphs K̄m and K̄n. Hence,

Corollary 3. The distance spectrum of the complete bipartite graph Km,n consists of simple eigenvalues m + n − 2 ±√
m2 −mn+ n2 and an eigenvalue -2 with multiplicity m+ n− 2.

Ifm, n ≥ 2, thenm+ n− 2 ≥
√
m2 −mn+ n2 and we get

Corollary 4. DE(Km,n) = 4(m+ n− 2) for m, n ≥ 2.
So, any two complete bipartite graphs with the same number of vertices, apart from stars, have the same distance energy.
Since the distance eigenvalues different from −2 uniquely determine parameters m and n, different complete bipartite
graphs have different distance spectra. Thus, our simplest family of sets of DE-equienergetic graphs is given by

{{K2,n−2, K3,n−3, . . . , Kbn/2c,dn/2e}: n ≥ 4}.
The key to the successful application of Theorem 2 lies in regular graphs for which most (if not all) adjacency eigenvalues
are at least −2, and so the corresponding eigenvalue −λ − 2 of the distance matrix is always negative. Such graphs are,
for example, the empty graph K̄m, the complete graph Km, the complete bipartite graph Km/2,m/2 for evenm, the cycle Cm, as
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well as regular line graphs [10] (which are themselves line graphs of regular or semiregular graphs). For such graphs, we can
use the well-known fact that the sum of all adjacency eigenvalues is zero (see, e.g., [10]) in order to determine the distance
energy of their join.

Theorem 5. For i = 1, 2, let Gi be an ri-regular graph with ni vertices, whose smallest eigenvalue of the adjacency matrix is at
least −2 and such that Gi 6∼= Kn. Then

DE(G1∇G2) = 4(n1 + n2)− 2(r1 + r2)− 8.

Proof. For i = 1, 2, denote the eigenvalues of the adjacency matrix AGi by λi,1 = ri ≥ λi,2 ≥ · · · ≥ λi,ni . According to
Theorem 2, the distance eigenvalues of G1∇G2 are

n1 + n2 − 2−
r1 + r2
2
±

√(
n1 − n2 −

r1 − r2
2

)2
+ n1n2. (2)

and −λi,j − 2 for i = 1, 2 and j = 2, 3, . . . , ni. The eigenvalues given by (2) are both nonnegative: since G1 and G2 are not
complete, we have n1 ≥ r1 + 2 and n2 ≥ r2 + 2, and so

(2n1 − r1 − 2)(2n2 − r2 − 2) ≥ n1n2.

Adding ((n1 − r1/2)− (n2 − r2/2))2 to both sides, we get

((n1 − r1/2)+ (n2 − r2/2)− 2)2 ≥ ((n1 − r1/2)− (n2 − r2/2))2 + n1n2,

i.e., n1 + n2 − 2−
r1+r2
2 −

√(
n1 − n2 −

r1−r2
2

)2
+ n1n2 ≥ 0. Thus, the sum of absolute values of eigenvalues (2) is equal to

(2n1 − r1 − 2)+ (2n2 − r2 − 2).
For the remaining eigenvalues of G1∇G2, from λi,j ≥ −2 we have that |−λi,j − 2| = λi,j + 2 and therefore,

n1∑
j=2

|−λ1,j − 2| +
n1∑
j=2

|−λ2,j − 2| =

(
n1∑
j=2

λ1,j

)
+ 2(n1 − 1)+

(
n2∑
j=2

λ2,j

)
+ 2(n2 − 1)

= −r1 + 2(n1 − 1)− r2 + 2(n2 − 1).

We conclude that the distance energy of G1∇G2 is 2(2n1 − r1 − 2)+ 2(2n2 − r2 − 2). �

This result can be used to find new families of equienergetic graphs easily. For example, for constant summ+ nwe have
the following sets of DE-equienergetic graphs:

DE
(
K̄m∇

n
2
K2
)
= 4(m+ n)− 10 for even n,

DE
(
K̄m∇Cn

)
= 4(m+ n)− 12,

DE
(m
2
K2∇

n
2
K2
)
= 4(m+ n)− 12, for evenm and n,

DE
(m
2
K2∇Cn

)
= 4(m+ n)− 14, for evenm,

DE (Cm∇Cn) = 4(m+ n)− 16,

3. The join of a regular graph with the union of regular graphs

A computer search for pairs of DE-equienergetic graphs revealed that, among others, the wheel W9 ∼= K1∇C8 and
K1∇(C5∪K3), which are DE-equienergetic by Theorem 5, are also DE-equienergetic to K1∇(C4∪K4). However, C4∪K4 is not
regular, but rather a union of regular graphs. Motivated by this example, we consider the distance spectrum of the graph
G0∇(G1 ∪ G2), where G0, G1 and G2 are regular graphs. If G1 and G2 have equal vertex degrees, then the distance spectrum
of G0∇(G1 ∪ G2) is given by Theorem 2. Thus, we consider the case when G1 and G2 have distinct vertex degrees only.

Theorem 6. For i = 0, 1, 2, let Gi be an ri-regular graphwith ni vertices and eigenvalues λi,1 = ri ≥ λi,2 ≥ λi,2 ≥ · · · ≥ λi,ni of
the adjacency matrix AGi . If r1 6= r2, then the distance spectrum of G0∇(G1∪G2) consists of eigenvalues−λi,j−2 for i = 0, 1, 2
and j = 2, 3, . . . , ni and three more eigenvalues which are solutions of the cubic equation in ν:

(2n0 − r0 − 2− ν)(ν + r1 + 2)(ν + r2 + 2)+ [2(ν + r0 + 2)− 3n0][n1(ν + r2 + 2)+ n2(ν + r1 + 2)] = 0. (3)

Proof. The distance matrix of G0∇(G1 ∪ G2) has the form

D =

[2(J − I)− AG0 J J
J 2(J − I)− AG1 2J
J 2J 2(J − I)− AG2

]
.
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By analogy to the proof of Theorem 2, to every eigenvalue λ of AGi with corresponding eigenvector x, such that j
Tx = 0, there

corresponds an eigenvalue−λ−2 of Dwith eigenvector of D obtained by putting vector x at the coordinates corresponding
to Gi and zeros at the remaining coordinates. The n0 + n1 + n2 − 3 eigenvectors so obtained are mutually orthogonal, and
also orthogonal to the vectors

(
j 0n1×1 0n2×1

)>, (0n0×1 j 0n2×1)>, (0n0×1 0n1×1 j)>. Thus, the three remaining eigenvectors
of D have the form (αj βj γ j)> for some (α, β, γ ) 6= (0, 0, 0).
If ν is an eigenvalue ofDwith an eigenvector (αj βj γ j)>, fromD (αj βj γ j)> = ν (αj βj γ j)>, and AGi j = rij for i = 0, 1, 2,

we get the system

α(2n0 − r0 − 2)+ βn1 + γ n2 = να, (4)

αn0 + β(2n1 − r1 − 2)+ 2γ n2 = νβ, (5)

αn0 + 2βn1 + γ (2n2 − r2 − 2) = νγ . (6)

Assuming α = 0 in (4)–(6), after simplifying, leads to (r1 − r2)γ = (r1 − r2)β = 0, which, due to r1 6= r2, implies that
β = γ = 0, a contradiction.
Suppose, without loss of generality, that α = 1. Solving for β and γ and substituting solutions back into (4) yields a cubic

equation (3) whose solutions, as easily seen, represent the three remaining eigenvalues of D. �

The cubic equation (3), provided n0 > r0+2, n1 ≥ r1+2 and r1 > r2, has a positive solution between 0 and 2n0− r0−2,
and a negative solution between−r1 − 2 and−r2 − 2. Thus, one cannot find |ν1| + |ν2| + |ν3|without explicitly knowing
the values of ν1, ν2 and ν3.
Even so, Theorem 6 can be used to provide new families of sets of DE-equienergetic graphs. The main points to observe

are, firstly, that the graphs G0, G1 and G2 need not be connected (the only fact used in the proofs of Theorems 2 and 6 is that
these graphs have the all-one vector j as an eigenvector of adjacency matrix), and, secondly, that the solutions of (3) depend
only on n0, r0, n1, r1, n2, r2, and not on the structure of G0, G1 and G2. Thus, we can create a set of DE-equienergetic graphs
whenever we can iterate one of the graphs, say G1, through a set of regular graphs with fixed values of n1 and r1.
For example, let G be an arbitrary, but fixed, regular graph with least eigenvalue at least−2. Further, for fixed n ∈ N, let

Pn be the set of integer partitions of n into parts of size at least 3. For P = {p1, . . . , pk} ∈ Pn, we denote by CP the union of
cycles with sizes p1, . . . , pk. Now, Theorem 6 implies the following:

Corollary 7. Graphs K1∇(CP ∪ G), P ∈ Pn, form a set of DE-equienergetic graphs.
Proof. Let G be an r-regular graph with m vertices and eigenvalues of the adjacency matrix λ1 = r ≥ λ2 ≥ · · · ≥ λm. For
P ∈ Pn, the graphCP is 2-regular with n vertices. From Theorem 6, the distance eigenvalues of K1∇(CP ∪G) are the solutions
of the cubic equation

− ν(ν + 4)(ν + r + 2)+ (2ν + 1)[n(ν + r + 2)+m(ν + 4)] = 0, (7)

the values−λi − 2 for i = 2, 3, . . . ,m, and the values−2 cos
π j
pi
− 2, for pi ∈ P , 0 ≤ j ≤ pi and (i, j) 6= (1, 0) (to exclude an

eigenvalue of CP corresponding to the all-one eigenvector).
Let f (n,m, r) be the sum of absolute values of the three solutions of (7). From the proof of Theorem 5 we know that∑m
i=2 |−λi−2| = 2m− r−2, while the sum of |−2 cos

π j
pi
−2| for pi ∈ P and j = 0, . . . , pi, (i, j) 6= (1, 0), is equal to 2n−4.

Thus, DE(K1∇(CP ∪ G)) = f (n,m, r)+ 2n+ 2m− r − 6, regardless of the partition P ∈ Pn. �

4. Concluding remarks

We have seen that the compositions of regular graphs based on the join of graphs yield a number of families containing
large sets of DE-equienergetic graphs. However, the families presented here consist of dense graphs. Among sparse graphs,
it is natural to start looking among trees for examples of DE-equienergetic graphs. We were surprised to find that

There exists no pair of noncospectral DE-equienergetic trees up to 20 vertices.

Trees have exactly one positive distance eigenvalue [11,12]. Other classes of graphswith exactly one positive distance eigen-
value include the hypermetric graphs and the graphs of negative type [13], connected bipartite graphs that are hypercube
embeddable, as well as median graphs, which are the retracts of hypercubes and can be recognized in polynomial time [14].
Hence, the distance energy of a tree is twice the unique positive distance eigenvalue. The above observation then leads to

the question of whether the positive distance eigenvalue determines the whole distance spectrum of a tree. More generally,
to what extent does the positive distance eigenvalue characterize a tree?
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Abstract. The D-eigenvalues {µ1, µ2, . . . , µn} of a graph G are the eigenvalues of its dis-
tance matrix D and form the D-spectrum of G denoted by specD(G) . The D-energy ED(G)
of the graph G is the sum of the absolute values of its D-eigenvalues. We describe here the
distance spectrum of some self-complementary graphs in the terms of their adjacency spec-
trum. These results are used to show that there exists D-equienergetic self-complementary
graphs of order n = 48t and 24(2t + 1) for t ≥ 4 .

1. INTRODUCTION

Let G be a simple graph on n vertices and let λ1, . . . , λn be the eigenvalues of its

adjacency matrix A . The energy of a graph is defined as

E = E(G) =
n∑

i=1

|λi| .
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For details on this currently much studied graph–spectral invariant see [4, 5, 6]. After

the introduction of the analogous concept of Laplacian energy [7], it was recognized

[1] that other energy-like invariants can be defined as well, among them the distance

energy .

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} . The distance

matrix D = D(G) of G is defined so that its (i, j)-entry dij is equal to dG(vi, vj) , the

distance between the vertices vi and vj of G . The eigenvalues of D(G) are said to be

the D-eigenvalues of G and form the D-spectrum of G , denoted by specD(G) . Since

the distance matrix is symmetric, all its eigenvalues µi , i = 1, 2, . . . , n , are real and

can be labelled so that µ1 ≥ µ2 ≥ · · · ≥ µn .

The D-energy, ED(G) , of G is then defined as

ED(G) =
n∑

i=1

|µi| . (1)

The concept of D-energy, Eq. (1), is recently introduced [11]. This definition

was motivated by the much older and nowadays extensively studied graph energy.

This invariant was studied by Consonni and Todeschini [1] for possible use in QSPR

modelling. Their study showed, among others, that the distance energy is a useful

molecular descriptor, since the values of ED(G) or ED(G)/n appear among the best

univariate models for the motor octane number of the octane isomers and for the

water solubility of polychlorobiphenyls. For some recent works on D-spectrum and

D-energy of graphs see [8, 9, 10, 11, 13].

Two graphs with equal D-energy are said to be D-equienergetic. D-cospectral

graphs are evidently D-equienergetic. Therefore, in what follows we focus our at-

tention to D-equienergetic non−D-cospectral graphs. In this paper we search for

self-complementary graphs of this kind. A similar work on pairs of ordinary equiener-

getic self-complementary graphs is [12].

All graphs considered in this paper are simple and we follow [2] for spectral graph

theoretic terminology. We shall need:

Lemma 1. [2] Let G be an r-regular connected graph, with
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spec(G) = {r, λ2, . . . , λn} . Then

spec(L2(G)) =

(
4r − 6 λ2 + 3r − 6 · · · λn + 3r − 6 2r − 6 −2

1 1 · · · 1 n(r−2)
2

nr(r−2)
2

)
.

Let G be a graph. Then the following construction [3] results in a self-comple-

mentary graph H . Recall that a graph H is said to be self-complementary if H ∼= H ,

where H is the complement of H .

Construction of H:

Replace each of the end vertices of P4 , the path on 4 vertices, by a copy of G and

each of the internal vertices by a copy of G . Join the vertices of these graphs by all

possible edges whenever the corresponding vertices of P4 are adjacent.

2. DISTANCE SPECTRUM OF H

Theorem 1. Let G be a connected k-regular graph on n vertices , with an ad-

jacency matrix A and spectrum {k, λ2, . . . , λn} . Then the distance spectrum of H
consists of −(λi + 2) and λi − 1 , i = 2, 3, . . . , n , each with multiplicity 2, together

with the numbers

1

2

[
7n− 3±

√
(2k + 1)2 + 45n2 − 12nk − 6n

]

and

−1

2

[
n + 3±

√
(2k + 1)2 + 5n2 + 4nk + 2n

]
.

Proof. Let G be a connected k-regular graph on n vertices with an adjacency

matrix A and spectrum {k, λ2, . . . , λn} . Let H be the self-complementary graph

obtained from G by the above construction. Then the distance matrix D of H has

the form 


2(J − I)− A J 2J 3J
J J − I + A J 2J
2J J J − I + A J
3J 2J J 2(J − I)− A


 .
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As a regular graph, G has the all-one vector j as an eigenvector corresponding to

eigenvalue k , while all other eigenvectors are orthogonal to j . Also corresponding to

the eigenvalue λ 6= k of G , G has the eigenvalue −1−λ such that both λ and −1−λ

have same multiplicities and eigenvectors.

Let λ be an arbitrary eigenvalue of the adjacency matrix of G with corresponding

eigenvector x , such that jT x = 0 . Then
(

x 0 0 0
)T

and
(

0 0 0 x
)T

are the

eigenvectors of D corresponding to eigenvalue −λ−2 . Corresponding to an arbitrary

eigenvalue λ of G , −λ − 2 is an eigenvalue of D with multiplicity 2. Similarly
(

0 x 0 0
)T

and
(

0 0 x 0
)T

are the eigenvectors of D corresponding to the

eigenvalue λ− 1 .

In this way, forming eigenvectors of the form

(
x 0 0 0

)T
,

(
0 x 0 0

)T
,

(
0 0 x 0

)T
,

(
0 0 0 x

)T

we can construct a total of 4(n−1) mutually orthogonal eigenvectors of D . All these

eigenvectors are orthogonal to the vectors

(
j 0 0 0

)T
,

(
0 j 0 0

)T
,

(
0 0 j 0

)T
,

(
0 0 0 j

)T
.

The four remaining eigenvectors of D are of the form Ψ = (αj, βj, γj, δj)T for some

(α, β, γ, δ) 6= (0, 0, 0, 0) .

Now, suppose that ν is an eigenvalue of D with an eigenvector Ψ . Then from

DΨ = νΨ , we get

[2(n− 1)− k] α + nβ + 2nγ + 3nδ = να (2)

nα + (n− 1 + k) β + nγ + 2nδ = νβ (3)

2nα + nβ + (n− 1 + k) γ + nδ = νγ (4)

3nα + 2nβ + nγ + [2(n− 1)− k] δ = νδ . (5)

Claim: α 6= 0. If α = 0 , then by solving equations (3)–(5) we get β = g1 γ and

δ = g2 γ for some constants g1 and g2 . Then using β + 2γ + 3δ = 0 , we obtain

[
11n2 + n (4k + 2) + 12k2 + 12k + 3

]
γ = 0
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which implies that γ = β = δ = 0 , which is impossible.

Thus α 6= 0 and without loss of generality we may set α = 1 .

Then by solving equations (3)–(5) for β, γ , and δ , and substituting these values

into equation (2), we arrive at a biquadratic equation in ν :

[
ν2 − (7n− 3) ν + n (n + 3k − 9)− (

k2 + k − 2
)]

× [
ν2 + (n + 3) ν − n (n + k − 1)− (

k2 + k − 2
)]

= 0

whose solutions

1

2

[
7n− 3±

√
(2k + 1)2 + 45n2 − 12nk − 6n

]

and

−1

2

[
n + 3±

√
(2k + 1)2 + 5n2 + 4nk + 2n

]

as easily seen, represent the four remaining eigenvalues of D . Hence the theorem. ¤

Corollary 1. Let G be a connected k-regular graph on n vertices with an adja-

cency matrix A and spectrum {k, λ2, . . . , λn} . Let H be the self-complementary graph

obtained from G by the above described construction. Then

ED(H) = 7n− 3 +
√

(2k + 1)2 + 5n2 + 4nk + 2n +
n∑

i=2

|λi + 2|+
n∑

i=2

|λi − 1| .

3. A PAIR OF D-EQUIENERGETIC SELF-COMPLEMENTARY GRAPHS

In this section we demonstrate the existence of a pair of D-equienergetic self-

complementary graphs on n vertices for n = 48t and n = 24(2t+1) for all t ≥ 4 . For

this we first prove:

Theorem 2. For every n ≥ 8 , there exists a pair of 4-regular non-cospectral

graphs on n vertices.
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Proof. We shall consider the following two cases.

Case 1: n = 2t , t ≥ 4 . In this case form two t-cycles u1u2 . . . ut and v1v2 . . . vt

and join ui to vi for each i . Let A be the resulting graph. Let B1 be the graph

obtained from A by making ui adjacent with vi+1 for each i and B2 be obtained by

making ui adjacent with vi+2 for each i where suffix addition is modulo t . Then both

B1 and B2 are 4-regular and the number of triangles in B1 is 2t and that in B2 is zero.

Thus B1 and B2 are non-cospectral.

In Figure 1 we illustrate the above construction for t = 4 .

Figure 1. The graphs B1 and B2 in the case t = 4 .

Case 2: n = 2t + 1 , t ≥ 4 .

In this case form the (t + 1)-cycle v1v2 . . . vtvt+1 and the t-cycle u1u2 . . . ut . Now

make vt−1 adjacent with v1 and vi with ui , i = 1, . . . , t . Then join vj to uj+2 ,

j = 2, . . . , t− 2 , vt to u2 and then vt+1 to u1 and u3 . Let F1 be the resulting graph.

Then F1 is 4-regular and contains two triangles v1v2v3 and v5u1v1 for t = 4 and only

one triangle vt+1u1v1 for t ≥ 5 .

To get the other 4-regular graph, form the (2t + 1)-cycle v1v2 . . . vtvt+1 . . . v2t+1 .

Join vi to vi+2 , i = 1, 3, 5, . . . , 2t + 1, 2, 4, 6, . . . , 2t . Let F2 be the resulting graph.

Then it is 4-regular and contains 2t+1 triangles. Thus the graphs F1 and F2 are not

cospectral. ¤
In Figure 2 we illustrate the above construction for t = 4 .
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Figure 2. The graphs F1 and F2 in the case t = 4 .

Theorem 3. Let G be a connected 4-regular graph on n vertices , with an adja-

cency matrix A and spectrum {4, λ2, . . . , λn} . Let H = L2(G) and H be the P4 self-

complementary graph obtained from H , according to the above described construction.

Then

ED(H) = 3[8(3n− 1) +
√

20n2 + 28n + 49] .

Proof follows from Theorem 1, Lemma 1, and the fact that both λi + 3r− 4 and

λi + 3r − 7 are positive when r = 4 . ¤

Theorem 4. For every n = 48t and n = 24(2t + 1) , t ≥ 4 , there exists a pair of

D-equienergetic self-complementary graph.

Proof. Case 1: n = 48t

Let B1 and B2 be the two non-cospectral 4-regular graphs on 2t vertices as given

by Theorem 2. Let B1 and B2 respectively denote their second iterated line graphs.

Then both are on 12t vertices and are 6-regular. Let B1 and B2 be the respective

self-complementary graphs on 48t vertices. Then by Theorem 3, B1 and B2 are

D-equienergetic.

The other case n = 24(2t + 1) can be proven in a similar manner by considering

the two non-cospectral 4-regular graphs on 2t+1 vertices whose structure is outlined

in Theorem 2. ¤
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4. D-ENERGY OF SOME SELF-COMPLEMENTARY GRAPHS

The D-energy of some self-complementary graphs H is easily deduced from the

adjacency spectra of the respective parent graphs G .

1. If G ∼= Kn , the complete graph on n vertices, then

ED (H) =





4 + 2
√

10 for n = 1

6 + 3
√

17 +
√

41 for n = 2

22 + 2
√

85 for n = 3

13n− 9 +
√

13n2 − 6n + 1 for n ≥ 4 .

2. If G ∼= Kp,p , the complete bipartite graph on n = 2p vertices, then

ED (H) = 15n− 17 +
√

8n2 + 4n + 1 .

3. If G ∼= CP (n) , the cocktail party graph on n vertices, then

ED (H) = 13n− 9 +
√

13n2 − 18n + 9 .

Acknowledgements: G. Indulal thanks the University Grants Commission of

Government of India for supporting this work by providing a grant under the minor

research project. I. Gutman thanks the Serbian Ministry of Science for partial support

of this work, through Grant no. 144015G.

References

[1] V. Consonni, R. Todeschini, New spectral indices for molecule description,

MATCH Commun. Math. Comput. Chem. 60 (2008), 3–14.

[2] D. M. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs – Theory and Applica-

tion, Academic Press, New York, 1980.

[3] A. Farrugia, Self-complementary graphs and generalisations: A comprehensive

reference manual , M. Sc. Thesis, University of Malta, 1999.



131

[4] I. Gutman, The energy of a graph: old and new results , in: A. Betten, A. Kohn-

ert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications ,

Springer–Verlag, Berlin, 2001, pp. 196–211.

[5] I. Gutman, X. Li, J. Zhang, Graph energy , in: M. Dehmer, F. Emmert–Streib

(Eds.), Analysis of Complex Networks. From Biology to Linguistics , Wiley–VCH,

Weinheim, 2009, in press.

[6] I. Gutman, O. E. Polansky, Mathematical Concept in Organic Chemistry ,

Springer–Verlag, Berlin, 1986, Chapter 8.

[7] I. Gutman, B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006),

29–37.

[8] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy

of graphs , Lin. Algebra Appl. 430 (2009), 106-113.

[9] G. Indulal, D-spectra and D-energy of the complements of iterated line graphs of

regular graphs , communicated.

[10] G. Indulal, I. Gutman, On the distance spectra of some graphs , Math. Commun.

13 (2008), 123–131.

[11] G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs , MATCH

Commun. Math. Comput. Chem. 60 (2008), 461–472.

[12] G. Indulal, A. Vijayakumar, Equienergetic self-complementary graphs , Czecho-

slovak Math J. 58 (2008) 911–919.
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